• Title/Summary/Keyword: real-time network

Search Result 4,424, Processing Time 0.033 seconds

Training of a Siamese Network to Build a Tracker without Using Tracking Labels (샴 네트워크를 사용하여 추적 레이블을 사용하지 않는 다중 객체 검출 및 추적기 학습에 관한 연구)

  • Kang, Jungyu;Song, Yoo-Seung;Min, Kyoung-Wook;Choi, Jeong Dan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.274-286
    • /
    • 2022
  • Multi-object tracking has been studied for a long time under computer vision and plays a critical role in applications such as autonomous driving and driving assistance. Multi-object tracking techniques generally consist of a detector that detects objects and a tracker that tracks the detected objects. Various publicly available datasets allow us to train a detector model without much effort. However, there are relatively few publicly available datasets for training a tracker model, and configuring own tracker datasets takes a long time compared to configuring detector datasets. Hence, the detector is often developed separately with a tracker module. However, the separated tracker should be adjusted whenever the former detector model is changed. This study proposes a system that can train a model that performs detection and tracking simultaneously using only the detector training datasets. In particular, a Siam network with augmentation is used to compose the detector and tracker. Experiments are conducted on public datasets to verify that the proposed algorithm can formulate a real-time multi-object tracker comparable to the state-of-the-art tracker models.

Intrusion Detection Method Using Unsupervised Learning-Based Embedding and Autoencoder (비지도 학습 기반의 임베딩과 오토인코더를 사용한 침입 탐지 방법)

  • Junwoo Lee;Kangseok Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.355-364
    • /
    • 2023
  • As advanced cyber threats continue to increase in recent years, it is difficult to detect new types of cyber attacks with existing pattern or signature-based intrusion detection method. Therefore, research on anomaly detection methods using data learning-based artificial intelligence technology is increasing. In addition, supervised learning-based anomaly detection methods are difficult to use in real environments because they require sufficient labeled data for learning. Research on an unsupervised learning-based method that learns from normal data and detects an anomaly by finding a pattern in the data itself has been actively conducted. Therefore, this study aims to extract a latent vector that preserves useful sequence information from sequence log data and develop an anomaly detection learning model using the extracted latent vector. Word2Vec was used to create a dense vector representation corresponding to the characteristics of each sequence, and an unsupervised autoencoder was developed to extract latent vectors from sequence data expressed as dense vectors. The developed autoencoder model is a recurrent neural network GRU (Gated Recurrent Unit) based denoising autoencoder suitable for sequence data, a one-dimensional convolutional neural network-based autoencoder to solve the limited short-term memory problem that GRU can have, and an autoencoder combining GRU and one-dimensional convolution was used. The data used in the experiment is time-series-based NGIDS (Next Generation IDS Dataset) data, and as a result of the experiment, an autoencoder that combines GRU and one-dimensional convolution is better than a model using a GRU-based autoencoder or a one-dimensional convolution-based autoencoder. It was efficient in terms of learning time for extracting useful latent patterns from training data, and showed stable performance with smaller fluctuations in anomaly detection performance.

Multi-View 3D Human Pose Estimation Based on Transformer (트랜스포머 기반의 다중 시점 3차원 인체자세추정)

  • Seoung Wook Choi;Jin Young Lee;Gye Young Kim
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.48-56
    • /
    • 2023
  • The technology of Three-dimensional human posture estimation is used in sports, motion recognition, and special effects of video media. Among various methods for this, multi-view 3D human pose estimation is essential for precise estimation even in complex real-world environments. But Existing models for multi-view 3D human posture estimation have the disadvantage of high order of time complexity as they use 3D feature maps. This paper proposes a method to extend an existing monocular viewpoint multi-frame model based on Transformer with lower time complexity to 3D human posture estimation for multi-viewpoints. To expand to multi-viewpoints our proposed method first generates an 8-dimensional joint coordinate that connects 2-dimensional joint coordinates for 17 joints at 4-vieiwpoints acquired using the 2-dimensional human posture detector, CPN(Cascaded Pyramid Network). This paper then converts them into 17×32 data with patch embedding, and enters the data into a transformer model, finally. Consequently, the MLP(Multi-Layer Perceptron) block that outputs the 3D-human posture simultaneously updates the 3D human posture estimation for 4-viewpoints at every iteration. Compared to Zheng[5]'s method the number of model parameters of the proposed method was 48.9%, MPJPE(Mean Per Joint Position Error) was reduced by 20.6 mm (43.8%) and the average learning time per epoch was more than 20 times faster.

  • PDF

A Methodology of XAI-Based Network Features Extraction for Rapid IoT Botnet Behavior Analysis (신속한 IoT 봇넷 행위분석을 위한 XAI 기반 네트워크 특징 추출 방법론)

  • Doyeon Kim;Chungil Cha;Kyuil Kim;Heeseok Kim;Jungsuk Song
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.5
    • /
    • pp.1037-1046
    • /
    • 2024
  • The widespread adoption of the Internet of Things (IoT) has enhanced efficiency and convenience across various fields, but it has also led to a surge in security threats. Among these, IoT botnets are particularly concerning as they can rapidly infect a large number of devices and launch various types of attacks, making them a significant security threat. In IoT environments where implementing security measures on individual devices is challenging, establishing a security monitoring system for real-time detection and response is essential to mitigate the risks posed by botnets. In the field of security monitoring, it is crucial not only to detect botnets but also to analyze their detailed behaviors to devise effective countermeasures. Security experts devote considerable effort to analyzing the payloads of detected threats to understand botnet behavior and develop appropriate responses. However, analyzing all threats manually is time-consuming and costly. To address this, our study proposes an XAI-based network feature extraction methodology to enhance the effectiveness of IoT botnet behavior analysis. This study proposes a practical security monitoring methodology for IoT botnet behavior analysis and response, consisting of three steps: 1) BPE and TF-IDF based payload feature extraction, 2) XAI-based feature importance analysis, and 3) visualization of decision rationale based on feature importance. This approach provides security experts with intuitive visual evidence of IoT attacks and reduces analysis time, contributing to faster decision-making and response strategy development in security monitoring.

A Reconfigurable Mixed-Model Assembly System of Cockpit Module using RFID/ZigBee Protocol (RFID/ZigBee 프로토콜을 활용한 가변구조 혼합형 모델 칵핏모듈 조립생산 시스템)

  • Koo, Ja-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8940-8947
    • /
    • 2015
  • Mixed-model assembly line has been widely used in automotive assembly industry to quickly respond the diverse product demands. But, this model can lead to part confusion, which is a source for assembly errors when parts are physically interchangeable in a mixed-model assembly line. With the recent application of new technologies such as radio frequency identification (RFID) and ZigBee wireless sensor network (WSN) to the assembly process, real-time information has become available in this manufacturing systems through IT infrastructures. At first, this paper presents an RFID application for assembly processes, specifically, for a mixed-model assembly line. Thus, to ensure that parts be picked accurately, each cockpit module on the assembly line is attached with a RFID tag and the tag is scanned using a RFID reader and recognizes the vehicle, and each part of the cockpit module is attached with a barcode and the barcode is scanned by a barcode reader and each part is identified correctly for the vehicle. Second, this paper presents a ZigBee wireless sensor network (WSN) protocol-based application for a reconfigurable mixed-model assembly line of cockpit module to reduce the assembly errors and the cost of the change/reconfiguration on the assembly lines due to the various orders and new models from the motor company, avoiding the wiring efforts and inconvenience by wiring between the several RFID devices and the IT server system. Finally, we presents the operation results for several years using this RFID/ZigBee wireless sensor network (WSN) protocol-based cockpit module assembly line.

Review of Environmental Monitoring and Communication System in Underground Mines Using Wireless Sensor Network (무선센서 네트워크를 이용한 지하광산 내 환경 모니터링과 통신 시스템의 연구 동향 분석 및 고찰)

  • Lee, Seungjun;Park, Yohan;Lee, Hakkyung;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.209-231
    • /
    • 2018
  • Severe mine disasters have continued to occur around the world. To ensure worker's health and safety and enhance the productivity, a number of studies have been conducted for the development of wireless sensor network (WSN), environmental monitoring, and communication system in underground mines. An increase in development and application of these systems has just begun with the introduction of information and communication technology into the mining industry in Korea, and yet there have been only a few studies that considered the underground mine ventilation system. This study presented the literature review on the development of WSN and environmental monitoring in underground mines, and especially, on 7 subjects in terms of underground mine ventilation. Moreover, studies that especially conducted real-time environmental monitoring were reviewed and categorized by each commercial software commonly utilized for the ventilation network analysis. For the application in domestic underground mines, further issues were discussed regarding research subjects that may be needed in the future and domestic environmental standards that has been used in the underground mine operation. This paper is expected to be useful for the development of WSN-based environmental monitoring and communication system, as well as for related studies in the future.

Development of an Integrated Forecasting and Warning System for Abrupt Natural Disaster using rainfall prediction data and Ubiquitous Sensor Network(USN) (농촌지역 돌발재해 피해 경감을 위한 USN기반 통합예경보시스템 (ANSIM)의 개발)

  • Bae, Seung-Jong;Bae, Won-Gil;Bae, Yeon-Joung;Kim, Seong-Pil;Kim, Soo-Jin;Seo, Il-Hwan;Seo, Seung-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.3
    • /
    • pp.171-179
    • /
    • 2015
  • The objectives of this research have been focussed on 1) developing prediction techniques for the flash flood and landslide based on rainfall prediction data in agricultural area and 2) developing an integrated forecasting system for the abrupt disasters using USN based real-time disaster sensing techniques. This study contains following steps to achieve the objective; 1) selecting rainfall prediction data, 2) constructing prediction techniques for flash flood and landslide, 3) developing USN and communication network protocol for detecting the abrupt disaster suitable for rural area, & 4) developing mobile application and SMS based early warning service system for local resident and tourist. Local prediction model (LDAPS, UM1.5km) supported by Korean meteorological administration was used for the rainfall prediction by considering spatial and temporal resolution. NRCS TR-20 and infinite slope stability analysis model were used to predict flash flood and landslide. There are limitations in terms of communication distance and cost using Zigbee and CDMA which have been used for existing disaster sensors. Rural suitable sensor-network module for water level and tilting gauge and gateway based on proprietary RF network were developed by consideration of low-cost, low-power, and long-distance for communication suitable for rural condition. SMS & mobile application forecasting & alarming system for local resident and tourist was set up for minimizing damage on the critical regions for abrupt disaster. The developed H/W & S/W for integrated abrupt disaster forecasting & alarming system was verified by field application.

Research on Vehicle Diagnostic and Monitoring technology Using WiBro Portable Device (와이브로 휴대기기를 사용한 차량진단 및 모니터링 기술에 관한 연구)

  • Ryoo, Hee-Soo;Won, Yong-Gwan;Park, Kwon-Chul;Ahn, Yong-Beom
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.17-26
    • /
    • 2010
  • This is concerned with the technology to monitor the vehicle operation, failure and disorder by using WiBro portable device. More precisely, the technology makes it possible that the information collection device is connected to both ECU(Electronic Control Unit) which is the device for controlling engine, transmission, brake, air-bag, etc that are connected to in-vehicle network and OBD-II connector that is for data collection from various sensors. In addition, with a WiBro portable device (cell phone, PDA, PMP, UMPC, etc). equipped with a vehicle diagnostic programs, information for operation, failure and malfunction can be obtained and analyzed in real-time, and alarm is alerted when the vehicle is in abnormal status, which makes the early reactions to the status. Furthermore, the collected data can be sent through WiBro network to the server managed by the company specialized in managing the vehicles, thus the technology could help the drivers who have less knowledge about their auto-vehicles have safe and economic driving. There is always a possibility of malfunction due to various types of noise that are caused by wring-harness when the device is wired-connected. In this research, in order to overcome this problem, we propose a system configuration that can do monitoring and diagnosis with a device for collecting data from vehicle and a personal WiBro device. Also, we performed research on data acquisition and interlock for the system defined by the definition for information and data sharing platform.

Two Design Techniques of Embedded Systems Based on Ad-Hoc Network for Wireless Image Observation (애드 혹 네트워크 기반의 무선 영상 관측용 임베디드 시스템의 두 가지 설계 기법들)

  • LEE, Yong Up;Song, Chang-Yeoung;Park, Jeong-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.271-279
    • /
    • 2014
  • In this paper, the two design techniques of the embedded system which provides a wireless image observation with temporary ad-hoc network are proposed and developed. The first method is based on the embedded system design technique for a nearly real-time wireless short observation application, having a specific remote monitoring node with a built-in image processing function, and having the maximum rate of 1 fps (frame per second) wireless image transmission capability of a $160{\times}128$size image. The second technique uses the embedded system for a general wireless long observation application, consisting of the main node, the remote monitoring node, and the system controller with built-in image processing function, and the capability of the wireless image transmission rate of 1/3 fps. The proposed system uses the wireless ad-hoc network which is widely accepted as a short range, low power, and bidirectional digital communication, the hardware are consisted of the general developed modules, a small digital camera, and a PC, and the embedded software based upon the Zigbee stack and the user interface software are developed and tested on the implemented module. The wireless environment analysis and the performance results are presented.

A Study on Survivability of Node using Response Mechanism in Active Network Environment (액티브 네트워크 환경에서 대응 메커니즘을 이용한 노드 생존성에 관한 연구)

  • Yang, Jin-Seok;Lee, Ho-Jae;Chang, Beom-Hwan;Kim, Hyoun-Ku;Han, Young-Ju;Chung, Tai-Myoung
    • The KIPS Transactions:PartC
    • /
    • v.10C no.6
    • /
    • pp.799-808
    • /
    • 2003
  • Existing security solutions such as Firewell and IDS (Intrusion Detection System) have a trouble in getting accurate detection rate about new attack and can not block interior attack. That is, existing securuty solutions have various shortcomings. Shortcomings of these security solutions can be supplemented with mechanism which guarantees an availability of systems. The mechanism which guarantees the survivability of node is various, we approachintrusion telerance using real time response mechanism. The monitoring code monitors related resources of system for survivability of vulnerable systm continuously. When realted resources exceed threshold, monitoring and response code is deployed to run. These mechanism guarantees the availability of system. We propose control mathod about resource monitoring. The monitoring code operates with this method. The response code may be resident in active node for availability or execute a job when a request is occurred. We suggest the node survivability mechanism that integrates the intrusion tolerance mechanism that complements the problems of existing security solutions. The mechanism takes asvantage of the automated service distribution supported by Active Network infrastructure instead of passive solutions. The mechanism takes advantage of the automated service distribution supported by Active Network infrastructure instead of passive system reconfiguration and patch.