• Title/Summary/Keyword: real-time network

Search Result 4,424, Processing Time 0.033 seconds

Real-time Natural Disaster Failure Analysis Information System Development using GIS Environment (GIS환경의 실시간 자연재해정보를 연계한 재해고장분석시스템 개발)

  • Ahn, Yeon-S.
    • Journal of Digital Contents Society
    • /
    • v.10 no.4
    • /
    • pp.639-648
    • /
    • 2009
  • Earth's environment issues are introduced recently and every year the social loss have been occurred by the impact of various disaster. This kind of disaster and weather problems are the increasing reason of electricity transmission network equipment's failures because of exposing by the natural environment. The emergency and abnormal status of electricity equipment make the power outage of manufacturing plant and discomfort of people's lives. So, to protect the electricity equipment from the natural disasters and to supply the power to customer as stable, the supporting systems are required. In this paper, the research results are described the development process and the outcomes of the real-time natural disaster failure analysis information system including the describing about the impact of disaster and weather change, making the natural weather information, and linking the realtime monitoring system. As of development process, according to application development methodology, techniques are enumerated including the real time interface with related systems, the analysing the geographic information on the digital map using GIS application technology to extract the malfunction equipment potentially and to manage the equipments efficiently. Through this system makes remarkable performance it minimize the failures of the equipments, the increasing the efficiency of the equipment operation, the support of scientific information related on the mid-term enhancement plan, the savings on equipment investment, the quality upgrading of electricity supply, and the various supports in the field.

  • PDF

Real-time Health Monitoring of Pipeline Structures Using Piezoelectric Sensors (압전센서를 사용한 배관 구조물의 실시간 건전성 평가)

  • Kim, Ju-Won;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.171-178
    • /
    • 2010
  • Pipeline structure is one of core underground infrastructure which transports primary sources. Since the almost pipeline structures are placed underground and connected each other complexly, it is difficult to monitor their structural health condition continuously. In order to overcome this limitation of recent monitoring technique, recently, a Ubiquitous Sensor Network (USN) system based on on-line and real-time monitoring system is being developed by the authors' research group. In this study, real-time pipeline health monitoring (PHM) methodology is presented based on electromechanical impedance methods using USN. Two types of damages including loosened bolts and notches are artificially inflicted on the pipeline structures, PZT and MFC sensors that have piezoelectric characteristics are employed to detect these damages. For objective evaluation of pipeline conditions, Damage metric such as Root Mean Square Deviation (RMSD) value was computed from the impedance signals to quantify the level of the damage. Optimal threshold levels for decision making are estimated by generalized extreme value(GEV) based statistical method. Throughout a series of experimental studies, it was reviewed the effectiveness and robustness of proposed PHM system.

Market Efficiency in Real-time : Evidence from the Korea Stock Exchange (한국유가증권시장의 실시간 정보 효율성 검증)

  • Lee, Woo-Baik;Choi, Woo-Suk
    • The Korean Journal of Financial Management
    • /
    • v.26 no.3
    • /
    • pp.103-138
    • /
    • 2009
  • In this article we examine a unique data set of intraday fair disclosure(FD) releases to shed light on market efficiency within the trading day. Specifically, this paper analyze the response of stock prices on fair disclosure disseminated in real-time through KIND(Korea Investor's Network for Disclosure) on Korea stock exchange during the period from January 2003 to September 2004. We find that the prices of stock experiences a statistically and economically significant increase beginning seconds after the fair disclosure is initially announced and lasting approximately two minutes. The stock price responds more strongly to fair disclosure on smaller firm but the response to fair disclosure on the largest firm stock is more gradual, lasting five minutes. We also examine the profitability of a short-term trading strategy based on dissemination of fair disclosure. After controlling for trading costs we find that trader who execute a trade following initial disclosure generate negative profits, but trader buying stock before initial disclosure realize statistically significant positive profit after two minute of disclosure. Summarizing overall results, our evidence supports that security prices on Korea stock exchange reflects all available information within two minutes and the Korea stock market is semi-strongly efficient enough that a trader cannot generate profits based on widely disseminated news unless he acts almost immediately.

  • PDF

Necessity of the Physical Distribution Cooperation to Enhance Competitive Capabilities of Healthcare SCM -Bigdata Business Model's Viewpoint- (의료 SCM 경쟁역량 강화를 위한 물류공동화 도입 필요성 -빅데이터 비즈니스 모델 관점-)

  • Park, Kwang-O;Jung, Dae-Hyun;Kwon, Sang-Min
    • Management & Information Systems Review
    • /
    • v.39 no.3
    • /
    • pp.17-35
    • /
    • 2020
  • The purpose of this study is to develop business models for current situational scenarios reflecting customer needs emphasize the need for implementing a logistics cooperation system by analyzing big data to strengthen SCM competitiveness capacities. For healthcare SCM competitiveness needed for the logistics cooperation usage intent, they were divided into product quality, price leadership, hand-over speed, and process flexibility for examination. The wordcloud results that analyzed major considerations to realize work efficiency between medical institutes, words like unexpected situations, information sharing, delivery, real-time, delivery, convenience, etc. were mentioned frequently. It can be analyzed as expressing the need to construct a system that can immediately respond to emergency situations on the weekends. Furthermore, in addition to pursuing communication and convenience, the importance of real-time information sharing that can share to the efficiency of inventory management were evident. Accordingly, it is judged that it is necessary to aim for a business model that can enhance visibility of the logistics pipeline in real-time using big data analysis on site. By analyzing the effects of the adaptability of a supply chain network for healthcare SCM competitiveness, it was revealed that obtaining competitive capacities is possible through the implementation of logistics cooperation. Stronger partnerships such as logistics cooperation will lead to SCM competitive capacities. It will be necessary to strengthen SCM competitiveness by searching for a strategic approach among companies in a direction that can promote mutual partnerships among companies using the joint logistics system of medical institutes. In particular, it will be necessary to search for ways to utilize HCSM through big data analysis according to the construction of a logistics cooperation system.

The development of water circulation model based on quasi-realtime hydrological data for drought monitoring (수문학적 가뭄 모니터링을 위한 실적자료 기반 물순환 모델 개발)

  • Kim, Jin-Young;Kim, Jin-Guk;Kim, Jang-Gyeng;Chun, Gun-il;Kang, Shin-uk;Lee, Jeong-Ju;Nam, Woo-Sung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.569-582
    • /
    • 2020
  • Recently, Korea has faced a change in the pattern of water use due to urbanization, which has caused difficulties in understanding the rainfall-runoff process and optimizing the allocation of available water resources. In this perspective, spatially downscaled analysis of the water balance is required for the efficient operation of water resources in the National Water Management Plan and the River Basin Water Resource Management Plan. However, the existing water balance analysis does not fully consider water circulation and availability in the basin, thus, the obtained results provide limited information in terms of decision making. This study aims at developing a novel water circulation analysis model that is designed to support a quasi-real-time assessment of water availability along the river. The water circulation model proposed in this study improved the problems that appear in the existing water balance analysis. More importantly, the results showed a significant improvement over the existing model, especially in the low flow simulation. The proposed modeling framework is expected to provide primary information for more realistic hydrological drought monitoring and drought countermeasures by providing streamflow information in quasi-real-time through a more accurate natural flow estimation approach with highly complex network.

Development of Short-term Heat Demand Forecasting Model using Real-time Demand Information from Calorimeters (실시간 열량계 정보를 활용한 단기 열 수요 예측 모델 개발에 관한 연구)

  • Song, Sang Hwa;Shin, KwangSup;Lee, JaeHun;Jung, YunJae;Lee, JaeSeung;Yoon, SeokMann
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.17-27
    • /
    • 2020
  • District heating system supplies heat from low-cost high-efficiency heat production facilities to heat demand areas through a heat pipe network. For efficient heat supply system operation, it is important to accurately predict the heat demand within the region and optimize the heat production plan accordingly. In this study, a heat demand forecasting model is proposed considering real-time calorimeter information from local heat demands. Previous models considered ambient temperature and heat demand history data to predict future heat demands. To improve forecast accuracy, the proposed heat demand forecast model added big data from real-time calorimeters installed in the heat demands within the target region. By employing calorimeter information directly in the model, it is expected that the proposed forecast model is to reflect heat use pattern of each demand. Computational experiemtns based on the actual heat demand data shows that the forecast accuracy of the proposed model improved when the calorimeter big data is reflected.

Development of deep learning algorithm for classification of disc cutter wear condition based on real-time measurement data (실시간 측정데이터 기반의 디스크커터 마모상태 판별 딥러닝 알고리즘 개발)

  • Ji Yun Lee;Byung Chul Yeo;Ho Young Jeong;Jung Joo Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.281-301
    • /
    • 2024
  • The power cable tunnels which are part of the underground transmission line project, are constructed using the shield TBM method. The disc cutter among the shield TBM components plays an important role in breaking rock mass. Efficient tunnel construction is possible only when appropriate replacement occurs as the wear limit is reached or damage such as uneven wear occurs. A study was conducted to determine the wear conditions of disc cutter using a deep learning algorithm based on real-time measurement data of wear and rotation speed. Based on the results of full-scaled tunnelling tests, it was confirmed that measurement data was obtained differently depending on the wear conditions of disc cutter. Using real-time measurement data, an algorithm was developed to determine disc cutter wear characteristics based on a convolutional neural network model. Distributional patterns of data can be learned through CNN filters, and the performance of the model that can classify uniform wear and uneven wear through these pattern features.

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.

Development of A Network loading model for Dynamic traffic Assignment (동적 통행배정모형을 위한 교통류 부하모형의 개발)

  • 임강원
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.149-158
    • /
    • 2002
  • For the purpose of preciously describing real time traffic pattern in urban road network, dynamic network loading(DNL) models able to simulate traffic behavior are required. A number of different methods are available, including macroscopic, microscopic dynamic network models, as well as analytical model. Equivalency minimization problem and Variation inequality problem are the analytical models, which include explicit mathematical travel cost function for describing traffic behaviors on the network. While microscopic simulation models move vehicles according to behavioral car-following and cell-transmission. However, DNL models embedding such travel time function have some limitations ; analytical model has lacking of describing traffic characteristics such as relations between flow and speed, between speed and density Microscopic simulation models are the most detailed and realistic, but they are difficult to calibrate and may not be the most practical tools for large-scale networks. To cope with such problems, this paper develops a new DNL model appropriate for dynamic traffic assignment(DTA), The model is combined with vertical queue model representing vehicles as vertical queues at the end of links. In order to compare and to assess the model, we use a contrived example network. From the numerical results, we found that the DNL model presented in the paper were able to describe traffic characteristics with reasonable amount of computing time. The model also showed good relationship between travel time and traffic flow and expressed the feature of backward turn at near capacity.

Quantitative Flood Forecasting Using Remotely-Sensed Data and Neural Networks

  • Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05a
    • /
    • pp.43-50
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict streamflow and flash floods. Previously, neural networks were used to develop a Quantitative Precipitation Forecasting (QPF) model that highly improved forecasting skill at specific locations in Pennsylvania, using both Numerical Weather Prediction (NWP) output and rainfall and radiosonde data. The objective of this study was to improve an existing artificial neural network model and incorporate the evolving structure and frequency of intense weather systems in the mid-Atlantic region of the United States for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as life time, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. The new Quantitative Flood Forecasting (QFF) model was applied to predict streamflow peaks with lead-times of 18 and 24 hours over a five year period in 4 watersheds on the leeward side of the Appalachian mountains in the mid-Atlantic region. Threat scores consistently above .6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 4% and up to 6% were attained for the 24 hour lead-time forecasts. This work demonstrates that multisensor data cast into an expert information system such as neural networks, if built upon scientific understanding of regional hydrometeorology, can lead to significant gains in the forecast skill of extreme rainfall and associated floods. In particular, this study validates our hypothesis that accurate and extended flood forecast lead-times can be attained by taking into consideration the synoptic evolution of atmospheric conditions extracted from the analysis of large-area remotely sensed imagery While physically-based numerical weather prediction and river routing models cannot accurately depict complex natural non-linear processes, and thus have difficulty in simulating extreme events such as heavy rainfall and floods, data-driven approaches should be viewed as a strong alternative in operational hydrology. This is especially more pertinent at a time when the diversity of sensors in satellites and ground-based operational weather monitoring systems provide large volumes of data on a real-time basis.

  • PDF