• Title/Summary/Keyword: real-time localization

Search Result 283, Processing Time 0.024 seconds

Factors for Speech Signal Time Delay Estimation (음성 신호를 이용한 시간지연 추정에 미치는 영향들에 관한 연구)

  • Kwon, Byoung-Ho;Park, Young-Jin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.823-831
    • /
    • 2008
  • Since it needs the light computational load and small database, sound source localization method using time delay of arrival(TDOA method) is applied at many research fields such as a robot auditory system, teleconferencing and so on. Researches for time delay estimation, which is the most important thing of TDOA method, had been studied broadly. However studies about factors for time delay estimation are insufficient, especially in case of real environment application. In 1997, Brandstein and Silverman announced that performance of time delay estimation deteriorates as reverberant time of room increases. Even though reverberant time of room is same, performance of estimation is different as the specific part of signals. In order to know that reason, we studied and analyzed the factors for time delay estimation using speech signal and room impulse response. In result, we can know that performance of time delay estimation is changed by different R/D ratio and signal characteristics in spite of same reverberant time. Also, we define the performance index(PI) to show a similar tendency to R/D ratio, and propose the method to improve the performance of time delay estimation with PI.

Enhanced Indoor Localization Scheme Based on Pedestrian Dead Reckoning and Kalman Filter Fusion with Smartphone Sensors (스마트폰 센서를 이용한 PDR과 칼만필터 기반 개선된 실내 위치 측위 기법)

  • Harun Jamil;Naeem Iqbal;Murad Ali Khan;Syed Shehryar Ali Naqvi;Do-Hyeun Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.4
    • /
    • pp.101-108
    • /
    • 2024
  • Indoor localization is a critical component for numerous applications, ranging from navigation in large buildings to emergency response. This paper presents an enhanced Pedestrian Dead Reckoning (PDR) scheme using smartphone sensors, integrating neural network-aided motion recognition, Kalman filter-based error correction, and multi-sensor data fusion. The proposed system leverages data from the accelerometer, magnetometer, gyroscope, and barometer to accurately estimate a user's position and orientation. A neural network processes sensor data to classify motion modes and provide real-time adjustments to stride length and heading calculations. The Kalman filter further refines these estimates, reducing cumulative errors and drift. Experimental results, collected using a smartphone across various floors of University, demonstrate the scheme's ability to accurately track vertical movements and changes in heading direction. Comparative analyses show that the proposed CNN-LSTM model outperforms conventional CNN and Deep CNN models in angle prediction. Additionally, the integration of barometric pressure data enables precise floor level detection, enhancing the system's robustness in multi-story environments. Proposed comprehensive approach significantly improves the accuracy and reliability of indoor localization, making it viable for real-world applications.

Data Association of Robot Localization and Mapping Using Partial Compatibility Test (Partial Compatibility Test 를 이용한 로봇의 위치 추정 및 매핑의 Data Association)

  • Yan, Rui Jun;Choi, Youn Sung;Wu, Jing;Han, Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.129-138
    • /
    • 2016
  • This paper presents a natural corners-based SLAM (Simultaneous Localization and Mapping) with a robust data association algorithm in a real unknown environment. Corners are extracted from raw laser sensor data, which are chosen as landmarks for correcting the pose of mobile robot and building the map. In the proposed data association method, the extracted corners in every step are separated into several groups with small numbers of corners. In each group, local best matching vector between new corners and stored ones is found by joint compatibility, while nearest feature for every new corner is checked by individual compatibility. All these groups with local best matching vector and nearest feature candidate of each new corner are combined by partial compatibility with linear matching time. Finally, SLAM experiment results in an indoor environment based on the extracted corners show good robustness and low computation complexity of the proposed algorithms in comparison with existing methods.

3-D Indoor Navigation and Autonomous Flight of a Micro Aerial Vehicle using a Low-cost LIDAR (저가형 LIDAR를 장착한 소형 무인항공기의 3차원 실내 항법 및 자동비행)

  • Huh, Sungsik;Cho, Sungwook;Shim, David Hyunchul
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.3
    • /
    • pp.154-159
    • /
    • 2014
  • The Global Positioning System (GPS) is widely used to aid the navigation of aerial vehicles. However, the GPS cannot be used indoors, so alternative navigation methods are needed to be developed for micro aerial vehicles (MAVs) flying in GPS-denied environments. In this paper, a real-time three-dimensional (3-D) indoor navigation system and closed-loop control of a quad-rotor aerial vehicle equipped with an inertial measurement unit (IMU) and a low-cost light detection and ranging (LIDAR) is presented. In order to estimate the pose of the vehicle equipped with the two-dimensional LIDAR, an octree-based grid map and Monte-Carlo Localization (MCL) are adopted. The navigation results using the MCL are then evaluated by making a comparison with a motion capture system. Finally, the results are used for closed-loop control in order to validate its positioning accuracy during procedures for stable hovering and waypoint-following.

Positional Tracking System Using Smartphone Sensor Information

  • Kim, Jung Yee
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.265-270
    • /
    • 2019
  • The technology to locate an individual has enabled various services, its utilization has increased. There were constraints such as the use of separate expensive equipment or the installation of specific devices on a facility, with most of the location technology studies focusing on the accuracy of location verification. These constraints can result in accuracy within a few tens of centimeters, but they are not technology that can be applied to a user's location in real-time in daily life. Therefore, this paper aims to track the locations of smartphones only using the basic components of smartphones. Based on smartphone sensor data, localization accuracy that can be used for verification of the users' locations is aimed at. Accelerometers, Wifi radio maps, and GPS sensor information are utilized to implement it. In forging the radio map, signal maps were built at each vertex based on the graph data structure This approach reduces traditional map-building efforts at the offline phase. Accelerometer data were made to determine the user's moving status, and the collected sensor data were fused using particle filters. Experiments have shown that the average user's location error is about 3.7 meters, which makes it reasonable for providing location-based services in everyday life.

Sensor Fault Detection, Localization, and System Reconfiguration with a Sliding Mode Observer and Adaptive Threshold of PMSM

  • Abderrezak, Aibeche;Madjid, Kidouche
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1012-1024
    • /
    • 2016
  • This study deals with an on-line software fault detection, localization, and system reconfiguration method for electrical system drives composed of three-phase AC/DC/AC converters and three-phase permanent magnet synchronous machine (PMSM) drives. Current sensor failure (outage), speed/position sensor loss (disconnection), and damaged DC-link voltage sensor are considered faults. The occurrence of these faults in PMSM drive systems degrades system performance and affects the safety, maintenance, and service continuity of the electrical system drives. The proposed method is based on the monitoring signals of "abc" currents, DC-link voltage, and rotor speed/position using a measurement chain. The listed signals are analyzed and evaluated with the generated residuals and threshold values obtained from a Sliding Mode Current-Speed-DC-link Voltage Observer (SMCSVO) to acquire an on-line fault decision. The novelty of the method is the faults diagnosis algorithm that combines the use of SMCSVO and adaptive thresholds; thus, the number of false alarms is reduced, and the reliability and robustness of the fault detection system are guaranteed. Furthermore, the proposed algorithm's performance is experimentally analyzed and tested in real time using a dSPACE DS 1104 digital signal processor board.

ETLi: Efficiently annotated traffic LiDAR dataset using incremental and suggestive annotation

  • Kang, Jungyu;Han, Seung-Jun;Kim, Nahyeon;Min, Kyoung-Wook
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.630-639
    • /
    • 2021
  • Autonomous driving requires a computerized perception of the environment for safety and machine-learning evaluation. Recognizing semantic information is difficult, as the objective is to instantly recognize and distinguish items in the environment. Training a model with real-time semantic capability and high reliability requires extensive and specialized datasets. However, generalized datasets are unavailable and are typically difficult to construct for specific tasks. Hence, a light detection and ranging semantic dataset suitable for semantic simultaneous localization and mapping and specialized for autonomous driving is proposed. This dataset is provided in a form that can be easily used by users familiar with existing two-dimensional image datasets, and it contains various weather and light conditions collected from a complex and diverse practical setting. An incremental and suggestive annotation routine is proposed to improve annotation efficiency. A model is trained to simultaneously predict segmentation labels and suggest class-representative frames. Experimental results demonstrate that the proposed algorithm yields a more efficient dataset than uniformly sampled datasets.

Ultrasound-guided Evacuation of Spontaneous Intracerebral Hemorrhage in Basal Ganglia

  • Park, Seong-Keun;Lee, Jung-Kil;Shin, Seung-Ryeol;Lee, Je-Hyuk
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.3
    • /
    • pp.197-200
    • /
    • 2005
  • Objective: Ultrasound can be used in the treatment of large intracerebral hematoma. The authors present our experiences with Ultrasound-guided catheter placement for lysis and drainage of ganglionic hematoma, with emphasis on technical aspects. Methods: The authors applied real-time ultrasonography for the aspiration of intracerebral hematoma in 6cases. Ultrasound-guided aspiration via a burrhole was performed under local anesthesia. We selected a temporal entry point instead of the frequently used precoronal approach in ganglionic hematoma. A burrhole was made 4 to 6cm posterior from posterior border of frontal process of the zygomatic bone at the level of 4 to 5cm above the external auditory meatus. Results: In all patients, the catheter was placed accurately into the hematoma target. All patients were irrigated with urokinase once to three times a day. The catheter could be removed within two or three days. The mean hematoma volume was reduced from initially 32mL to 5mL in an average of two days. There were no intraoperative complications related to the use of real-time ultrasonography and no postoperative infections were noted. Conclusion: Ultrasound allows an easy and precise localization of the hematoma and the distance from the surface to the target can be calculated. Ultrasound-guided catheter placement for fibrinolysis and hematoma drainage is a simple and safe procedure.

A Case Study of a Navigator Optimization Process

  • Cho, Doosan
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.26-31
    • /
    • 2017
  • When mobile navigator device accesses data randomly, the cache memory performance is rapidly deteriorated due to low memory access locality. For instance, GPS (General Positioning System) of navigator program for automobiles or drones, that are currently in common use, uses data from 32 satellites and computes current position of a receiver. This computation of positioning is the major part of GPS which accounts more than 50% computation in the program. In this computation task, the satellite signals are received in real time and stored in buffer memories. At this task, since necessary data cannot be sequentially stored, the data is read and used at random. This data accessing patterns are generated randomly, thus, memory system performance is worse by low data locality. As a result, it is difficult to process data in real time due to low data localization. Improving the low memory access locality inherited on the algorithms of conventional communication applications requires a certain optimization technique to solve this problem. In this study, we try to do optimizations with data and memory to improve the locality problem. In experiment, we show that our case study can improve processing speed of core computation and improve our overall system performance by 14%.

Real-time Face Localization for Video Monitoring (무인 영상 감시 시스템을 위한 실시간 얼굴 영역 추출 알고리즘)

  • 주영현;이정훈;문영식
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.11
    • /
    • pp.48-56
    • /
    • 1998
  • In this paper, a moving object detection and face region extraction algorithm which can be used in video monitoring systems is presented. The proposed algorithm is composed of two stages. In the first stage, each frame of an input video sequence is analyzed using three measures which are based on image pixel difference. If the current frame contains moving objects, their skin regions are extracted using color and frame difference information in the second stage. Since the proposed algorithm does not rely on computationally expensive features like optical flow, it is well suited for real-time applications. Experimental results tested on various sequences have shown the robustness of the proposed algorithm.

  • PDF