• Title/Summary/Keyword: real-time kernel

Search Result 227, Processing Time 0.027 seconds

Implementation of an USB Camera Interface Based on Embedded Linux System (임베디드 LINUX 시스템 기반 USB 카메라 인터페이스 구현)

  • Song Sung-Hee;Kim Jeong-Hyeon;Kim Tae-Hyo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.4
    • /
    • pp.169-175
    • /
    • 2005
  • In recent, implementation of the embedded system is gradually in the spotlight of world-wide by information technology(IT) engineers. By this time, an implementation of real time system is limited on image acquisition and processing system in practical. In this paper, the USB camera interface system based on the embedded linux OS is implemented using USB 2.0 camera with low cost. This system can obtain image signals into the memory via X-hyper255B processor from USB camera. It is need to initialize USB camera by the Video4Linux for the kernel device driver. From the system image capturing and image processing can be performed. It is confirmed that the image data can be transformed to packet of Network File System(NFS) and connected to the internetwork, then the data can be monitored from the client computer connected to the internetwork.

  • PDF

Effcient Neural Network Architecture for Fat Target Detection and Recognition (목표물의 고속 탐지 및 인식을 위한 효율적인 신경망 구조)

  • Weon, Yong-Kwan;Baek, Yong-Chang;Lee, Jeong-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2461-2469
    • /
    • 1997
  • Target detection and recognition problems, in which neural networks are widely used, require translation invariant and real-time processing in addition to the requirements that general pattern recognition problems need. This paper presents a novel architecture that meets the requirements and explains effective methodology to train the network. The proposed neural network is an architectural extension of the shared-weight neural network that is composed of the feature extraction stage followed by the pattern recognition stage. Its feature extraction stage performs correlational operation on the input with a weight kernel, and the entire neural network can be considered a nonlinear correlation filter. Therefore, the output of the proposed neural network is correlational plane with peak values at the location of the target. The architecture of this neural network is suitable for implementing with parallel or distributed computers, and this fact allows the application to the problems which require realtime processing. Net training methodology to overcome the problem caused by unbalance of the number of targets and non-targets is also introduced. To verify the performance, the proposed network is applied to detection and recognition problem of a specific automobile driving around in a parking lot. The results show no false alarms and fast processing enough to track a target that moves as fast as about 190 km per hour.

  • PDF

Improvement of Endoscopic Image using De-Interlacing Technique (De-Interlace 기법을 이용한 내시경 영상의 화질 개선)

  • 신동익;조민수;허수진
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.469-476
    • /
    • 1998
  • In the case of acquisition and displaying medical Images such as ultrasonography and endoscopy on VGA monitor of PC system, image degradation of tear-drop appears through scan conversion. In this study, we compare several methods which can solve this degradation and implement the hardware system that resolves this problem in real-time with PC. It is possible to represent high quality image display and real-time processing and acquisition with specific de-interlacing device and PCI bridge on our hardware system. Image quality is improved remarkably on our hardware system. It is implemented as PC-based system, so acquiring, saving images and describing text comment on those images and PACS networking can be easily implemented.metabolism. All images were spatially normalized to MNI standard PET template and smoothed with 16mm FWHM Gaussian kernel using SPM96. Mean count in cerebral region was normalized. The VOls for 34 cerebral regions were previously defined on the standard template and 17 different counts of mirrored regions to hemispheric midline were extracted from spatially normalized images. A three-layer feed-forward error back-propagation neural network classifier with 7 input nodes and 3 output nodes was used. The network was trained to interpret metabolic patterns and produce identical diagnoses with those of expert viewers. The performance of the neural network was optimized by testing with 5~40 nodes in hidden layer. Randomly selected 40 images from each group were used to train the network and the remainders were used to test the learned network. The optimized neural network gave a maximum agreement rate of 80.3% with expert viewers. It used 20 hidden nodes and was trained for 1508 epochs. Also, neural network gave agreement rates of 75~80% with 10 or 30 nodes in hidden layer. We conclude that artificial neural network performed as well as human experts and could be potentially useful as clinical decision support tool for the localization of epileptogenic zones.

  • PDF

Design and Implementation of Anomaly Traffic Control framework based on Linux Netfilter System and CBQ Routing Mechanisms (리눅스 Netfilter시스템과 CBQ 라우팅 기능을 이용한 비정상 트래픽 제어 프레임워크 설계 및 구현)

  • 조은경;고광선;이태근;강용혁;엄영익
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.6
    • /
    • pp.129-140
    • /
    • 2003
  • Recently viruses and various hacking tools that threat hosts on a network becomes more intelligent and cleverer, and so the various security mechanisms against them have ken developed during last decades. To detect these network attacks, many NIPSs(Network-based Intrusion Prevention Systems) that are more functional than traditional NIDSs are developed by several companies and organizations. But, many previous NIPSS are hewn to have some weakness in protecting important hosts from network attacks because of its incorrectness and post-management aspects. The aspect of incorrectness means that many NIPSs incorrectly discriminate between normal and attack network traffic in real time. The aspect of post-management means that they generally respond to attacks after the intrusions are already performed to a large extent. Therefore, to detect network attacks in realtime and to increase the capability of analyzing packets, faster and more active responding capabilities are required for NIPS frameworks. In this paper, we propose a framework for real-time intrusion prevention. This framework consists of packet filtering component that works on netfilter in Linux kernel and traffic control component that have a capability of step-by-step control over abnormal network traffic with the CBQ mechanism.

Efficient VLSI Architecture of Full-Image Guided Filter Based on Two-Pass Model (양방향 모델을 적용한 Full-image Guided Filter의 효율적인 VLSI 구조)

  • Lee, Gyeore;Park, Taegeun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1507-1514
    • /
    • 2016
  • Full-image guided filter reflects all pixels of image in filtering by using weight propagation and two-pass model, whereas the existing guide filter is processed based on the kernel window. Therefore the computational complexity can be improved while maintaining characteristics of guide filter, such as edge-preserving, smoothing, and so on. In this paper, we propose an efficient VLSI architecture for the full-image guided filter by analyzing the data dependency, the data frequency and the PSNR analysis of the image in order to achieve enough speed for various applications such as stereo vision, real-time systems, etc. In addition, the proposed efficient scheduling enables the realtime process by minimizing the idle period in weight computation. The proposed VLSI architecture shows 214MHz of maximum operating frequency (image size: 384*288, 965 fps) and 76K of gates (internal memory excluded).

Monitoring of Chemical Processes Using Modified Scale Space Filtering and Functional-Link-Associative Neural Network (개선된 스케일 스페이스 필터링과 함수연결연상 신경망을 이용한 화학공정 감시)

  • Park, Jung-Hwan;Kim, Yoon-Sik;Chang, Tae-Suk;Yoon, En-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1113-1119
    • /
    • 2000
  • To operate a process plant safely and economically, process monitoring is very important. Process monitoring is the task to identify the state of the system from sensor data. Process monitoring includes data acquisition, regulatory control, data reconciliation, fault detection, etc. This research focuses on the data recon-ciliation using scale-space filtering and fault detection using functional-link associative neural networks. Scale-space filtering is a multi-resolution signal analysis method. Scale-space filtering can extract highest frequency factors(noise) effectively. But scale-space filtering has too large calculation costs and end effect problems. This research reduces the calculation cost of scale-space filtering by applying the minimum limit to the gaussian kernel. And the end-effect that occurs at the end of the signal of the scale-space filtering is overcome by using extrapolation related with the clustering change detection method. Nonlinear principal component analysis methods using neural network have been reviewed and the separately expanded functional-link associative neural network is proposed for chemical process monitoring. The separately expanded functional-link associative neural network has better learning capabilities, generalization abilities and short learning time than the exiting-neural networks. Separately expanded functional-link associative neural network can express a statistical model similar to real process by expanding the input data separately. Combining the proposed methods-modified scale-space filtering and fault detection method using the separately expanded functional-link associative neural network-a process monitoring system is proposed in this research. the usefulness of the proposed method is proven by its application a boiler water supply unit.

  • PDF

An efficient acceleration algorithm of GPU ray tracing using CUDA (CUDA를 이용한 효과적인 GPU 광선추적 가속 알고리즘)

  • Ji, Joong-Hyun;Yun, Dong-Ho;Ko, Kwang-Hee
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.469-474
    • /
    • 2009
  • This paper proposes an real time ray tracing system using optimized kd-tree traversal environment and ray/triangle intersection algorithm. The previous kd-tree traversal algorithms search for the upper nodes in a bottom-up manner. In a such way we need to revisit the already visited parent node or use redundant memory after failing to find the intersected primitives in the leaf node. Thus ray tracing for relatively complex scenes become more difficult. The new algorithm contains stacks implemented on GPU's local memory on CUDA framework, thus elegantly eliminate the problems of previous algorithms. After traversing the node we perform the latest CPU-based ray/triangle intersection algorithm 'Plucker coordinate test', which is further accelerated in massively parallel thanks to CUDA. Plucker test can drastically reduce the computational costs since it does not use barycentric coordinates but only simple test using the relations between a ray and the triangle edges. The entire system is consist of a single ray kernel simply and implemented without introduction of complicated synchronization or ray packets. Consequently our experiment shows the new algorithm can is roughly twice as faster as the previous.

  • PDF

Development of the Selected Multi-model Consensus Technique for the Tropical Cyclone Track Forecast in the Western North Pacific (태풍 진로예측을 위한 다중모델 선택 컨센서스 기법 개발)

  • Jun, Sanghee;Lee, Woojeong;Kang, KiRyong;Yun, Won-Tae
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.375-387
    • /
    • 2015
  • A Selected Multi-model CONsensus (SMCON) technique was developed and verified for the tropical cyclone track forecast in the western North Pacific. The SMCON forecasts were produced by averaging numerical model forecasts showing low 70% latest 6 h prediction errors among 21 models. In the homogeneous comparison for 54 tropical cyclones in 2013 and 2014, the SMCON improvement rate was higher than the other forecasts such as the Non-Selected Multi-model CONsensus (NSMCON) and other numerical models (i.e., GDAPS, GEPS, GFS, HWRF, ECMWF, ECMWF_H, ECMWF_EPS, JGSM, TEPS). However, the SMCON showed lower or similar improvement rate than a few forecasts including ECMWF_EPS forecasts at 96 h in 2013 and at 72 h in 2014 and the TEPS forecast at 120 h in 2013. Mean track errors of the SMCON for two year were smaller than the NSMCON and these differences were 0.4, 1.2, 5.9, 12.9, 8.2 km at 24-, 48-, 72-, 96-, 120-h respectively. The SMCON error distributions showed smaller central tendency than the NSMCON's except 72-, 96-h forecasts in 2013. Similarly, the density for smaller track errors of the SMCON was higher than the NSMCON's except at 72-, 96-h forecast in 2013 in the kernel density estimation analysis. In addition, the NSMCON has lager range of errors above the third quantile and larger standard deviation than the SMCON's at 72-, 96-h forecasts in 2013. Also, the SMCON showed smaller bias than ECMWF_H for the cross track bias. Thus, we concluded that the SMCON could provide more reliable information on the tropical cyclone track forecast by reflecting the real-time performance of the numerical models.

Implementation of an Embedded System for Image Tracking Using Web Camera (ICCAS 2005)

  • Nam, Chul;Ha, Kwan-Yong;;Kim, Hie-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1405-1408
    • /
    • 2005
  • An embedded system has been applied to many fields including households and industrial sites. In the past, user interface products with simple functions were commercialized .but now user demands are increasing and the system has more various applicable fields due to a high penetration rate of the Internet. Therefore, the demand for embedded system is tend to rise In this paper, we Implementation of an embedded system for image tracking. This system is used a fixed IP for the reliable server operation on TCP/IP networks. A real time broadcasting of video image on the internet was developed by using an USB camera on the embedded Linux system. The digital camera is connected at the USB host port of the embedded board. all input images from the video camera is continuously stored as a compressed JPEG file in a directory at the Linux web-server. And each frame image data from web camera is compared for measurement of displacement Vector. That used Block matching algorithm and edge detection algorithm for past speed. And the displacement vector is used at pan/tilt motor control through RS232 serial cable. The embedded board utilized the S3C2410 MPU Which used the ARM 920T core form Samsung. The operating system was ported to embedded Linux kernel and mounted of root file system. And the stored images are sent to the client PC through the web browser. It used the network function of Linux and it developed a program with protocol of the TCP/IP.

  • PDF

Development of a Portable Welding Robot for Welding Jobs in Ship Blocks (조선소의 대형블록 용접을 위한 인력 운반형 용접로봇 개발)

  • Park, Juyi;Kim, Jin-Wook;Kim, Jung-Min;Kim, Ji-Yoon;Kim, Woongji;Kim, Soo-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.760-766
    • /
    • 2014
  • This paper represents a portable robot for use in the welding process of the double hulls in shipbuilding yards. It has 5 degrees of freedom and 3kg of payload. Its body weight is 17.3 [kg] so that human workers can carry it by hand to the work place. Its body is mainly made of magnesium and aluminum alloys. Since the robot is placed about 25m apart from its controller, EtherCAT is adopted for reliable connection between the robot and controller through a single light cable. RTX real-time kernel and KPA EtherCAT master are used to control the robot on a Windows XP environment. The performance of the developed robot is satisfactory to the requirement in welding tasks of U-type cells in shipbuilding yards.