• 제목/요약/키워드: real-time integration

Search Result 628, Processing Time 0.03 seconds

The Development of the Automatic Discharge Acquisition & Management System (ADAMS) using Ubiquitous Technique

  • Park, Jae-Young;Oh, Byoung-Dong;Jeon, Seon-Mee;Kim, Jae-Bok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.488-493
    • /
    • 2006
  • Accurate river discharge is the most important factor in managing river basins and for successfully maintaining total maximum daily loads in Korea. It is not easy to measure the discharge directly in large rivers owing to physical and environmental constraints, even after investing much time and money. Recently, to overcome these historical drawbacks in river discharge measurement, we have developed the Automatic Discharge Acquisition & Management System (ADAMS) that scans the river cross-section and measures each cell $(1m{\times}1m)$ velocity using HADCP. The hardware system is composed of an HADCP sensor and winch, as well as a PC and software system for the discharge calculation module and hardware control module. It is controlled remotely via the internet and uses the velocity-depth integration method and the velocity-contour method for calculating river discharges. The characteristics of ADAMS are a ubiquitously accessible system, featuring real time automatic discharge measurement, remote control via the internet. The results using ADAMS at the Jindong stage site show less than 5% uncertainty and are 4 times more efficient than the ADCP & Q-boat system. This system can be used to measure any large river, river mouth or tributary river affected by backwater, all of which have a very difficult measuring real time discharge. The next generation of ADAMS will feature an upgrade to increase portability and GPS integration.

  • PDF

As-Rigid-As-Possible Dynamic Deformation with Oriented Particles (방향성 입자를 이용한 ARAP 동적 변형)

  • Choi, Min Gyu
    • Journal of Korea Game Society
    • /
    • v.17 no.1
    • /
    • pp.89-98
    • /
    • 2017
  • This paper presents a novel ARAP (as-rigid-as-possible) approach to real-time simulation of physics-based deformation. To cope with one, two and three dimensional deformable bodies in an efficient, robust and uniform manner, we introduce a deformation graph of oriented particles and formulate the corresponding ARAP deformation energy. For stable time integration of the oriented particles, we develop an implicit integration scheme formulated in a variational form. Our method seeks the optimal positions and rotations of the oriented particles by iteratively applying an alternating local/global optimization scheme. The proposed method is easy to implement and computationally efficient to simulate complex deformable models in real time.

A Development of Attitude GPS/INS Integration System (자세 측정용 GPS/INS통합 시스템 개발)

  • Oh, Chun-Gyun;Lee, Jae-Ho;Seo, Hung-Seok;Sung, Tae-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1984-1986
    • /
    • 2001
  • In order to provided continuous solutions, latest developing navigation systems tend to integrate GPS receiver with INS or DR. Using the GPS carrier-phase measurements, an attitude GPS receiver with three antennas obtain the 3-dimensional attitude such as roll, pitch, and heading as well as position and velocity. With these angle measurements, in the attitude GPS/INS integrated system, attitude or gyro errors can be directly compensated. In this paper, we develop an integrated navigation system that combines attitude GPS receiver with INS. The performance of real-time integrated navigation system is determined by not only the implements of integration filter but also the synchronization of measurements. To meet these real-time requirements, the navigation software is implemented in multi-tasking structure in this paper. We also employ time-synchronization technique in the multi-sensor fusion. Experimental results show that the performance of the attitude GPS/INS integrated system is consistent even when cycle-slip occurs in carrier-phase measurements.

  • PDF

Real-Time QRS Detection Using Wavelet Packet Transform

  • Bholsithi, Wisarut;;Hinjit, Watcharapong;Dejhan, Kobchai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1880-1884
    • /
    • 2004
  • The wavelet packet transform has been applied for QRS detection with squaring, window integration, and impulse filter techniques to cut down the false detection of QRS complex. This real time QRS detection has been performed on Simulink and Matlab. The correct QRS detection rates have reached to 99.75% in the experiment with 15 sets of ECG data from European ST-T database which are kept in Physionet.

  • PDF

A Real-Time Implementation of the Vision System for SMT Automation (SMT자동화를 위한 시각 시스템의 실시간 구현)

  • 전병환;윤일동;김용환;황신환;이상욱;최종수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.6
    • /
    • pp.944-953
    • /
    • 1990
  • This paper describes design and implementation of a real-time high-precision vision system for an automation of SMT(surface mounting technology ). Also, a part inspection algorithm which calculates the position and direction of SMD(surface mounted device) accurately and performs the ruling using those information are presented, and a parallel processing technique for implementing those algorithms is also described. For a real-time implementation of iage acquisition and processing, several hardware modules, namely, multi-functional A/D-D/A board, frame memory board are developed. Particularly, a PE (processing element) board which employs the DSP56001 DSP (digital signal processor) is developed for the purpose of concurrent processing of part inspection algorithms. A stand-alone vision system is built by integration of the developed hardware modules and related softwares.

  • PDF

Real-time Depth Estimation for Visual Serving with Eye-in-Hand Robot (아이인핸드로봇의 영상 추적을 위한 실시간 거리측정)

  • Park, Jong-Cheol;Bien, Zeung-Nam;Ro, Cheol-Rae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1122-1124
    • /
    • 1996
  • Depth between the robot and the target is an essential information in the robot control. However, in case of eye-in-hand robot with one camera, it is not easy to get an accurate depth information in real-time. In this paper, the techniques of depth-from-motion and depth-from-focus are combined to accomplish the real-time requirement. Integration of the two approaches are accomplished by appropriate use of confidence factors which are evaluated by fuzzy rules. Also a fuzzy logic based calibration technique is proposed.

  • PDF

Developing a Real-time Cashflow Management System for National R&D Management (국가 연구 개발 프로젝트 실시간 자금 관리 시스템 개발에 관한 연구)

  • Han, Seung-Youp;Lee, Hyejung;Lee, Jungwoo
    • Journal of Information Technology Services
    • /
    • v.13 no.3
    • /
    • pp.343-357
    • /
    • 2014
  • As science and technology infiltrates every aspects of modern society in terms of economic and social growth and development, funding for research and development (R&D) is growing rapidly. Republic of Korea is not an exception in this trend and the R&D funding in Korea has been grown about 10% every year, recently. However, as the scope and size of funding grows exponentially, need for monitoring and managing these R&D projects becoming more and more imminent. Though different types of project management systems were developed by a variety of agencies and departments and used in monitoring and managing, these systems were developed as standalone silo type systems. These systems are not connected to each other while the same researchers may involved in different projects across agencies and department. Also, these management systems are not linked to the banking systems in which real transactions of funding occurs, such as cost reimbursement and financial audit of each R&D accounts. Historically, a few fraud and malappropriation cases were found and indicted. However, as the number of these incidents grows along with the growth of R&D funding, a large scale integration/linking of project management systems and banking systems. Realizing the importance of systems integration among agencies as well as with the banking systems, situational requirements analyses were conducted concerning the current state of R&D management system. As a results, a Real-time Case Management System (RCMS) was proposed as a solution to current problems. In this paper, the collected systems requirements were documents with analyses of the situation, the architecture of the integrated systems with more user-friendly technological alternatives. This large scale linkage requires interface standardization as well as modularization of interfaces. Proposed systems architecture is introduced here with technical details of Jex Framework used,, followed by resulting technical and economic performance of the Realtime Cashflow Management System (RCMS).

Estimation of Displacements Using the Transformed Response in Time and Frequency Domain

  • Jung, Beom-Seok
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.44-50
    • /
    • 2003
  • If the accelerometers are used in measuring the response, the absolute values of the velocity and displacement are not usually obtainable because their initial values are not accounted for in the integration of the acceleration response. A new dynamic response conversion algorithm of both the time domain and the frequency domain is proposed for the problem in estimating the displacement data by defining the transformed responses. In this algorithm, the displacement response can be obtained from the measured acceleration records by integration without requiring the knowledge of the initial velocity and displacement information. The applicability of the technique is tested by an example problem using the real bridge's superstructure under several cases of moving load. In the response conversion procedure of the frequency domain, the identified response according to the frequency can be estimated by changing over the limits of integration. If the reliability of the identified responses is ensured, it is expected that the proposed method for estimating the impact factor can be useful in the bridge's dynamic test. This method can be useful in those practical cases when the direct measurement of the displacement is difficult as in the dynamic studies of huge structure.

  • PDF

A Methodology for the Ship System Integration with Open Architecture : Focusing on the Total Ship Computing Environment based Architecture Building and Validation (개방형 구조(OA)를 이용한 함정체계통합 구축 방법론 : 통합함정컴퓨팅환경(TSCE)기반 아키텍처 구축 및 검증을 중심으로)

  • Park, Gang-Soo;Yoo, Byeong-Chun;Kim, Kyeongtaek;Choi, Bong-Wan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.3
    • /
    • pp.68-76
    • /
    • 2020
  • In a series of recent launch tests, North Korea has been improving the firepower of its missiles that can target South Korea. North Korea's missiles and submarines are capable of threatening targets in South Korea and are likely faster and more covert than the systems previously seen in North Korea. The advanced threats require that ROK Navy should not only detect them earlier than ever but also response quicker than ever. In addition to increasing threats, the number of young man that can be enlisted for military service has been dramatically decreasing. To deal with these difficulty, ROK navy has been making various efforts to acquire a SMART warship having enhanced defense capability with fewer human resources. For quick response time with fewer operators, ROK Navy should improve the efficiency of systems and control tower mounted on the ship by promoting the Ship System Integration. Total Ship Computing Environment (TSCE) is a method of providing single computing environment for all ship systems. Though several years have passed since the first proposal of TSCE, limited information has been provided and domestic research on the TSCE is still in its infancy. In this paper, we apply TSCE with open architecture (OA) to solve the problems that ROK Navy is facing in order to meet the requirements for the SMART ship. We first review the level of Ship System Integration of both domestic and foreign ships. Then, based on analyses of integration demands for SMART warship, we apply real time OA to design architecture for TSCE from functional view and physical view. Simulation result shows that the proposed architecture has faster response time than the response time of the existing architecture and satisfies its design requirements.

The Development of Remote Monitoring Technology for URC Robot (URC 로봇 원격 모니터링기술 개발)

  • Kim Joo-Man
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.8
    • /
    • pp.8-19
    • /
    • 2006
  • In the ubiquitous environment, the real-time remote control and monitoring technology for intelligent robot creates service as a sharable and independent of time-location for various contents to get from a sensor or camera of the robot. In this paper, We propose the real-time monitor and control mechanism for intelligent robot called URC(Ubiquitous Robotic Companion). URC are intelligent robots designed as to interact with external digital device that can communicate through wire or wireless by integration the network and information technology into traditional robot. It has been carried out by implementing this technology into the target robot called ISSAC4 and proving its practical worth. We designed feasibly to control on remote site by web-browser. It guarantees a continuity of real-time image transferring by Client-Pull method.

  • PDF