DOI QR코드

DOI QR Code

As-Rigid-As-Possible Dynamic Deformation with Oriented Particles

방향성 입자를 이용한 ARAP 동적 변형

  • Choi, Min Gyu (Dept. of Computer Science, Kwangwoon University)
  • 최민규 (광운대학교 컴퓨터과학과)
  • Received : 2016.01.15
  • Accepted : 2016.02.20
  • Published : 2017.02.20

Abstract

This paper presents a novel ARAP (as-rigid-as-possible) approach to real-time simulation of physics-based deformation. To cope with one, two and three dimensional deformable bodies in an efficient, robust and uniform manner, we introduce a deformation graph of oriented particles and formulate the corresponding ARAP deformation energy. For stable time integration of the oriented particles, we develop an implicit integration scheme formulated in a variational form. Our method seeks the optimal positions and rotations of the oriented particles by iteratively applying an alternating local/global optimization scheme. The proposed method is easy to implement and computationally efficient to simulate complex deformable models in real time.

본 논문에서는 물리기반 동적 변형을 실시간에 안정적으로 시뮬레이션하는 새로운 ARAP(as-rigid-as-possible) 방법을 제안한다. 1, 2, 3차원 물체의 변형을 안정적이며, 빠르고, 일관성 있게 다루기 위하여 방향성 입자로 이루어진 변형 그래프를 도입하고 그에 따른 ARAP 변형에너지를 공식화한다. 방향성 입자의 안정적인 시간 적분을 위해서는 변분 공식화에 기반을 둔 내재적 시간 적분 기법을 개발한다. 또한 국지적/전역적 최적화를 교대로 반복 적용하여 방향성 입자의 최적 위치 및 회전을 구한다. 제안된 방법은 구현이 쉽고 복잡한 변형을 실시간에 시뮬레이션할 수 있을 정도로 빠르다.

Keywords

References

  1. M. Muller, B. Heidelberger, M. Hennix, and J. Ratcliff, "Position based dynamics," Journal of Visual Communication and Image Representation, Vol. 18, pp. 109-118, 2007. https://doi.org/10.1016/j.jvcir.2007.01.005
  2. M. Muller, B. Heidelberger, M. Teschner, and M. Gross, "Meshless deformations based on shape matching," ACM Transactions on Graphics, Vol. 24, No. 3, pp. 471-478, 2005. https://doi.org/10.1145/1073204.1073216
  3. A. R. Rivers and D. L. James, "FastLSM: fast lattice shape matching for robust real-time deformations", Vol 26, No. 3, Article 82, 2007.
  4. M. Muller and N. Chentanez, "Solid simulation with oriented particles", ACM Transactions on Graphics, Vol. 30, No. 4, Article 92, 2011.
  5. S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly, "Projective dynamics: fusing constraint projections for fast simulation," ACM Transactions on Graphics, Vol. 33, No. 4, Article 154, 2014.
  6. T. Liu, A. W. Bargteil, J. F. O'Brien, and L. Kavan, "Fast simulation of mass-spring systems," ACM Transactions on Graphics, Vol. 32, No. 6, Article 214, 2013.
  7. R. Narain, M. Overby, and G. E. Brown, "ADMM$\supseteq$ projective dynamics: fast simulation of general constitutive models," Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2016, pp. 21-28, 2016.
  8. R. W. Sumner, J. Schmid, and M. Pauly, "Embedded deformation for shape manipulation," ACM Transactions on Graphics, Vol. 26, No. 3, Article. 80, 2007.
  9. D. Terzopoulos and K. Fleischer, "Modeling inelastic deformation: viscoelasticity, plasticity, fracture", Computer Graphics (Proc. ACM SIGGRAPH), Vol. 22, No. 4, pp. 269-278, 1988.
  10. A. Nealen, M. Muller, R. Keiser, E. Boxerman, and M. Carlson, "Physically based deformable models in computer graphics", Computer Graphics Forum, Vol. 25, No. 4, pp. 809-836, 2006. https://doi.org/10.1111/j.1467-8659.2006.01000.x
  11. J. Bender, D. Koschier, P. Charrier, and D. Weber, "Position-based simulation of continuous materials", Computers and Graphics. Vol. 44, pp. 1-10, 2014. https://doi.org/10.1016/j.cag.2014.07.004
  12. M. Muller, N. Chentanez, T. Y. Kim, and M. Macklin, "Strain based dynamics", Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2014, pp. 149-157, 2014.
  13. M. Macklin and M. Muller, "Position based fluids", ACM Transactions on Graphics, Vol. 32, No. 4, Article 104, 2013.
  14. M. Macklin, M. Muller, N. Chentanez, and T. Y. Kim, "Unified particle physics for real-time applications", ACM Transactions on Graphics, Vol. 33, No. 4, Article 153, 2014.
  15. M. Macklin, M. Muller, and N. Chentanez, "XPBD: Position-based simulation of compliant constrained dynamics", Proc. ACM Motion in Games 2016, pp. 49-54, 2016.
  16. H. Wang, "A Chebyshev semi-iterative approach for accelerating projective and position-based dynamics," ACM Transactions on Graphics, Vol. 34, No. 6, Article 246, 2015.
  17. T Liu, S. Bouaziz, and L. Kavan, "Towards real-time simulation of hyperelastic materials", arXiv preprint arXiv, 1604.07378, 2016.
  18. O. Sorkine and M. Alexa, "As-rigid-aspossible surface modeling", Proc. Eurographics Symposium on Geometry Processing 2007, pp. 109-116, 2007.
  19. S. Umeyama, "Least-squares estimation of transformation parameters between two point patterns," IEEE Pattern Analysis and Machine Intelligence, Vol. 13, No. 4, pp. 376-380, 1991. https://doi.org/10.1109/34.88573