• Title/Summary/Keyword: real-time digital control

Search Result 657, Processing Time 0.024 seconds

A study on a multi-input time control of multi-joint manipulator using sliding mode (슬라이딩 모드를 이용한 다관절 매니퓰레이터의 다입력 실시간 제어에 관한 연구)

  • 이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.652-657
    • /
    • 1992
  • This paper presents to accomplish successfully a multi-input real time control by applying control hierarchy for sliding mode of multi-joint manipulators whose nonlinear terms are regarded as disturbances. We- could simplify the dynamic equations of a manipulator and servo system, which are composed of linear elements and nonlinear elements, by assuming that nonlinear terms, which are Inertia term, gravity force term, Coriolis force term and centrifugal force term, are external disturbance. By simplifying that equation, we could easily obtain a control input which satisfy sliding mode of multi-input system. We proposed a new control input algorithm in order to decrease chattering by changing control input according as effect of disturbance if a control response become within allowance error range. In this experiments, we used DSP(Digital Signal Processor) controller to suppress chattering by time delay of calculation and to carry out real time control.

  • PDF

Real Time W-band FMCW Distance Measuring Devices Using TMS320C6701 DSP (TMS320C6701 DSP를 이용한 실시간 W-대역 FMCW 거리측정장치)

  • Lee, Chang-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.109-116
    • /
    • 2006
  • This paper presents a real time distance measuring device using a W-band linear frequency modulated continuous wave(FMCW) radar and TMS320C6701 digital signal processor(DSP). We used FFT operation for measuring distance with the beat signals and the results of FFT could be converted to distance with ease. We presented how to implement a real time miniaturized hardware system including network protocols using a single DSP core. Also how to control the modulation signal of FMCW system to compensate the VCO nonlinearity using the Time Gating control of DSP is presented. We have shown that the proposed system has good performances for measuring distance in real time via outdoor environment experiments.

Design of Real-Time Adaptive Lattice Predictor Using (DSP를 이용한 실시간 적응격자 예측기 설계)

  • 김성환;홍기룡;홍완희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.2
    • /
    • pp.119-124
    • /
    • 1988
  • Real-time adaptive lattice predictor was implemented on the TMS32020 DSP chip for digital signal processing. The implemented system was composed of Input-Output units and centrla processing-control unit and its supporting assembly soft ware. The performance of hardware realization was verified by comparing input signal and one-step prediction signal which are calcualted by the real-time adaptive lattice predictor. As a result, for 4 stage lattice structure, the maximum running frequency was obtained as 6.41 KHz in this experiment.

  • PDF

Real-Time Fault Detection in Discrete Manufacturing Systems Via LSTM Model based on PLC Digital Control Signals (PLC 디지털 제어 신호를 통한 LSTM기반의 이산 생산 공정의 실시간 고장 상태 감지)

  • Song, Yong-Uk;Baek, Sujeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.115-123
    • /
    • 2021
  • A lot of sensor and control signals is generated by an industrial controller and related internet-of-things in discrete manufacturing system. The acquired signals are such records indicating whether several process operations have been correctly conducted or not in the system, therefore they are usually composed of binary numbers. For example, once a certain sensor turns on, the corresponding value is changed from 0 to 1, and it means the process is finished the previous operation and ready to conduct next operation. If an actuator starts to move, the corresponding value is changed from 0 to 1 and it indicates the corresponding operation is been conducting. Because traditional fault detection approaches are generally conducted with analog sensor signals and the signals show stationary during normal operation states, it is not simple to identify whether the manufacturing process works properly via conventional fault detection methods. However, digital control signals collected from a programmable logic controller continuously vary during normal process operation in order to show inherent sequence information which indicates the conducting operation tasks. Therefore, in this research, it is proposed to a recurrent neural network-based fault detection approach for considering sequential patterns in normal states of the manufacturing process. Using the constructed long short-term memory based fault detection, it is possible to predict the next control signals and detect faulty states by compared the predicted and real control signals in real-time. We validated and verified the proposed fault detection methods using digital control signals which are collected from a laser marking process, and the method provide good detection performance only using binary values.

A Controller Design and Performance Evaluation for 6 DOF Driving Simulator (6자유도 주행 시뮬레이터 구동을 위한 제어기 설계 및 성능평가)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper Vehicle driving simulator have been used in the development and modification of models. A real-time simulation system and washout algorithm for an excavator have been developed for a driving simulator with six degrees of freedom. An interesting question, "how the 6 DOF Driving Simulator can be controlled optimally for the various tasks?" is not easy to be answered. This paper presents the hardware and software developed for a driving simulator of construction vehicle. A simulator can reduce cost and time a variety of driving simulations in the laboratory. Using its 6 DOF Simulator can move in various modes, and perform dexterous tasks. Driving simulators have begun to proliferate in the automotive industry and the associated research community. This effort involves the real-time dynamic of wheel-type excavator the design and manufacturing of the Stewart platform an integrated control system of the platform and three-dimensional graphic modeling of the driving environments.

Real-Time Tuning of the Active Vibration Controller by the Genetic Algorithm (유전자 알고리즘을 이용한 능동진동제어기의 실시간 조정)

  • 신태식
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1083-1093
    • /
    • 2000
  • This paper is concerned with the real-time automatic tuning of the positive position feedback controller for smart structures by the genetic algorithms. The genetic algorithms haute proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The advantage of the positive position feedback controller is that if it is tuned properly it can enhance the damping value of a target mode without affecting other modes. In this paper, we develop for the first time a real-time algorithm for determining a tuning frequency of the PPF controller based on the genetic algorithms. To this end, the digital PPF control law is downloaded to the DSP chip and a main program, which runs the genetic algorithms in real time, updates the parameter of the controller in real time. Hence, any kind of control including the positive position feedback controller can be used in adaptive fashion in real time. Experimental results show that the real-time tuning of the positive position feedback controller can be achieved successfully. so that vibrations are suppressed satisfactorily.

  • PDF

Design of Self-Orgnizing Fuzzy Controller for Real-Time Dynamic Control of AC1 Robot (AC1 로봇의 실시간 동적제어를 위한 자기구성 퍼지 제어기설계)

  • 김종수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.125-130
    • /
    • 1999
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, In the synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed for a hierarchical control structure consisting of basic level and high level that modify control rules.

  • PDF

A Study on the Apparatus for Monitoring and Diagnosing the Real-Time Operating Performance of Steam Boiler Control (대열 스팀보일러의 실시간 운전성능 감시 및 진단 장치에 관한 연구)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.135-137
    • /
    • 2010
  • In this paper, PLC program for flowing type steam boiler control is presented. The function of the implementation are flowing type steam boiler, PLC control, interpretation of PLC command, and temperature scheme. The flowing type steam boiler approach is based on master-slave control concept. To show validity of the developed PLC program, severial experiments are illustrated.

  • PDF

Real-time Interactive Control of Magnetic Resonance Imaging System Using High-speed Digital Signal Processors (고속 DSP를 이용한 실시간 자기공명영상시스템 제어)

  • 안창범;김휴정;이흥규
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.341-349
    • /
    • 2003
  • A real time interactive controller (spectrometer) for magnetic resonance imaging (MRI) system has been developed using high speed digital signal processors (DSP). The controller generates radio frequency (rf) waveforms and audio frequency gradient waveforms and controls multiple receivers for data acquisition. By employing DSPs having high computational power (e.g., TMS320C670l) real time generation of complicated gradient waveforms and interactive control of selection planes are possible, which are important features in real-time imaging of moving organs, e.g., cardiac imaging. The spectrometer was successfully implemented at a 1.5 Tesla whole body MRI system for clinical application. Performance of the spectrometer is verified by various experiments including high- speed imaging such as fast spin echo (FSE) and echo planar imaging (EPI). These high-speed imaging techniques reduce measurement time, however, usually intensify artifact if there is any systematic phase error or jitter in the synchronization between the transmitter, receiver, and gradients.

Hardware-in-the-loop Simulation Method for a Wind Farm Controller Using Real Time Digital Simulator

  • Kim, Gyeong-Hun;Kim, Jong-Yul;Jeon, Jin-Hong;Kim, Seul-Ki;Kim, Eung-Sang;Lee, Ju-Han;Park, Minwon;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1489-1494
    • /
    • 2014
  • A hardware-in-the-loop simulation (HILS) method for a wind farm controller using a real time digital simulator (RTDS) is presented, and performance of the wind farm controller is analyzed. A 100 MW wind farm which includes 5 MW wind power generation systems (WPGS) is modeled and analyzed in RSCAD/RTDS. The wind farm controller is implemented by using a computer, which is connected to the RTDS through transmission control protocol/internet protocol (TCP/IP). The HILS results show the active power and power factor of the wind farm, which are controlled by the wind farm controller. The proposed HILS method in this paper can be effectively utilized to validate and test a wind farm controller under the environment in practice without a real wind farm.