• Title/Summary/Keyword: real-time broadcast

Search Result 433, Processing Time 0.023 seconds

Hybrid Multicast/Broadcast Algorithm for Highly-Demanded Video Services with Low Complexity (Highly-Demanded 비디오 서비스를 위한 낮은 복잡도의 혼합 멀티캐스트/브로드캐스트 알고리즘)

  • Li, Can;Bahk, Sae-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1B
    • /
    • pp.101-110
    • /
    • 2011
  • With the deployment of broadband networking technology, many clients are enabled to receive various Video on Demand (VoD) services. To support many clients, the network should be designed by considering the following factors: viewer's waiting time, buffer requirement at each client, number of channel required for video delivery, and video segmentation complexity. Among the currently available VoD service approaches, the Polyharmonic and Staircase broadcasting approaches show best performance with respect to each viewer's waiting time and buffer requirement, respectively. However, these approaches have the problem of dividing a video into too many segments, which causes very many channels to be managed and used at a time. To overcome this problem, we propose Polyharmonic-Staircase-Staggered (PSS) broadcasting approach that uses the Polyharmonic and Staircase approaches for the head part transmission and the Staggered approach for the tail part transmission. It is simple and bandwidth efficient. The numerical results demonstrate that our approach shows viewer's waiting time is comparable to that in the Harmonic approach with a slight increase in the bandwidth requirement, and saves the buffer requirement by about 60\% compared to the Harmonic broadcasting approach by simply adjusting the video partitioning coefficient factor. More importantly, our approach shows the best performance in terms of the number of segments and the number of channels managed and used simultaneously, which is a critical factor in real operation of VoD services. Lastly, we present how to configure the system adaptively according to the video partitioning coefficient.

New Implementation and Test Methodology for Single Lens Stereoscopic 3D Camera System (새로운 단일렌즈 양안식 입체영상 카메라의 구현과 테스트 방법)

  • Park, Sangil;Yoo, Sunggeun;Lee, Youngwha
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.569-577
    • /
    • 2014
  • From the year 2009, 3D Stereoscopic movies and TV have been spotlighted after the huge success of a movie called "AVATAR". Moreover, most of 3D movies & contents are created by mixing real-life shots & virtual animated pictures, such as "Robocop 3", "Transformer 4" as shown in 2014. However, the stereoscopic 3D video film shooting with a traditional stereoscopic rig camera system, takes much more time to set the rig system and adjust the system setting for proper film making which necessarily resulting in bigger cost. In fact, these problems have depreciated the success of Avatar as decreasing demand for 3D stereoscopic video shooting. In this paper, inherent problems of traditional stereoscopic rig camera system are analyzed, and as a solution for the problems, a novel implementations of single-lens optical stereoscopic 3D camera system is suggested. The new system can be implemented to a technology for separating two lights when even those lights passing through in the same optical axis. The system has advantages of adjusting the setting and taking video compared with traditional stereoscopic 3D rig systems. Furthermore, this system can acquire comfortable 3D stereoscopic video because of the good characteristics of geometrical errors. This paper will be discussed the single-lens stereoscopic 3D camera system using rolling shutters, it will be tested geometrical errors of this system. Lastly, other types of single lens stereoscopic 3D camera system are discussed to develop the promising future of this system.

HEVC Encoder Optimization using Depth Information (깊이정보를 이용한 HEVC의 인코더 고속화 방법)

  • Lee, Yoon Jin;Bae, Dong In;Park, Gwang Hoon
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.640-655
    • /
    • 2014
  • Many of today's video systems have additional depth camera to provide extra features such as 3D support. Thanks to these changes made in multimedia system, it is now much easier to obtain depth information of the video. Depth information can be used in various areas such as object classification, background area recognition, and so on. With depth information, we can achieve even higher coding efficiency compared to only using conventional method. Thus, in this paper, we propose the 2D video coding algorithm which uses depth information on top of the next generation 2D video codec HEVC. Background area can be recognized with depth information and by performing HEVC with it, coding complexity can be reduced. If current CU is background area, we propose the following three methods, 1) Earlier stop split structure of CU with PU SKIP mode, 2) Limiting split structure of CU with CU information in temporal position, 3) Limiting the range of motion searching. We implement our proposal using HEVC HM 12.0 reference software. With these methods results shows that encoding complexity is reduced more than 40% with only 0.5% BD-Bitrate loss. Especially, in case of video acquired through the Kinect developed by Microsoft Corp., encoding complexity is reduced by max 53% without a loss of quality. So, it is expected that these techniques can apply real-time online communication, mobile or handheld video service and so on.

Study on Storytelling of VR Cartoons (VR 카툰의 스토리텔링 연구)

  • Yoo, Taekyung
    • Journal of Broadcast Engineering
    • /
    • v.23 no.1
    • /
    • pp.45-52
    • /
    • 2018
  • The virtual reality (VR) cartoon is a format of VR contents that leverage the characteristics of webtoons that provides the simple story line and graphical storytelling tools to strategically surmount limitations of VR contents design. The VR cartoon enables people to experience the imaginary three-dimensional space in the webtoon as a real space by the transformation of webtoon contents through VR prototyping. The VR cartoon successfully presents focused environment where people can readily pay attention to the contents without notable motion sickness. People have been familiar with the storytelling strategy in the context of published cartoons and webtoons, likely we've understood the narrative of a movie through the continuous scenes projected in the screen. Indeed, it has been recognized as a popular toolset of communication, where visual images are sequentially delivered by replacing multiple planar spaces to tell a story narrative. While there are discrete panels with the time and space resolution in the graphical cartoons, people can distill a commit closure based on their past experiences. This is a typical "grammar" of the cartoon, which can be extrapolated to the VR cartoon that provides a seminal storytelling strategy. In this article, we review how the storytelling strategy in webtoons has been transformed into that in VR cartoons, and analyze the key components of VR cartoons. We envision that our research can potentially create keystones to produce variety of new VR contents by reflecting various narrative media including cartoon as a 'sequential art'.

Tile, Slice, and Deblocking Filter Parallelization Method in HEVC (HEVC 복호기에서의 타일, 슬라이스, 디블록킹 필터 병렬화 방법)

  • Son, Sohee;Baek, Aram;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.4
    • /
    • pp.484-495
    • /
    • 2017
  • The development of display devices and the increase of network transmission bandwidth bring demands for over 2K high resolution video such as panorama video, 4K ultra-high definition commercial broadcasting, and ultra-wide viewing video. To compress these image sequences with significant amount of data, High Efficiency Video Coding (HEVC) standard with the highest coding efficiency is a promising solution. HEVC, the latest video coding standard, provides high encoding efficiency using various advanced encoding tools, but it also requires significant amounts of computation complexity compared to previous coding standards. In particular, the complexity of HEVC decoding process is a imposing challenges on real-time playback of ultra-high resolution video. To accelerate the HEVC decoding process for ultra high resolution video, this paper introduces a data-level parallel video decoding method using slice and/or tile supported by HEVC. Moreover, deblocking filter process is further parallelized. The proposed method distributes independent decoding operations of each tile and/or each slice to multiple threads as well as deblocking filter operations. The experimental results show that the proposed method facilitates executions up to 2.0 times faster than the HEVC reference software for 4K videos.

Gaze Tracking System Using Feature Points of Pupil and Glints Center (동공과 글린트의 특징점 관계를 이용한 시선 추적 시스템)

  • Park Jin-Woo;Kwon Yong-Moo;Sohn Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.11 no.1 s.30
    • /
    • pp.80-90
    • /
    • 2006
  • A simple 2D gaze tracking method using single camera and Purkinje image is proposed. This method employs single camera with infrared filter to capture one eye and two infrared light sources to make reflection points for estimating corresponding gaze point on the screen from user's eyes. Single camera, infrared light sources and user's head can be slightly moved. Thus, it renders simple and flexible system without using any inconvenient fixed equipments or assuming fixed head. The system also includes a simple and accurate personal calibration procedure. Before using the system, each user only has to stare at two target points for a few seconds so that the system can initiate user's individual factors of estimating algorithm. The proposed system has been developed to work in real-time providing over 10 frames per second with XGA $(1024{\times}768)$ resolution. The test results of nine objects of three subjects show that the system is achieving an average estimation error less than I degree.

Generation of Multi-view Images Using Depth Map Decomposition and Edge Smoothing (깊이맵의 정보 분해와 경계 평탄 필터링을 이용한 다시점 영상 생성 방법)

  • Kim, Sung-Yeol;Lee, Sang-Beom;Kim, Yoo-Kyung;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.471-482
    • /
    • 2006
  • In this paper, we propose a new scheme to generate multi-view images utilizing depth map decomposition and adaptive edge smoothing. After carrying out smooth filtering based on an adaptive window size to regions of edges in the depth map, we decompose the smoothed depth map into four types of images: regular mesh, object boundary, feature point, and number-of-layer images. Then, we generate 3-D scenes from the decomposed images using a 3-D mesh triangulation technique. Finally, we extract multi-view images from the reconstructed 3-D scenes by changing the position of a virtual camera in the 3-D space. Experimental results show that our scheme generates multi-view images successfully by minimizing a rubber-sheet problem using edge smoothing, and renders consecutive 3-D scenes in real time through information decomposition of depth maps. In addition, the proposed scheme can be used for 3-D applications that need the depth information, such as depth keying, since we can preserve the depth data unlike the previous unsymmetric filtering method.

Implementation of Interactive Media Content Production Framework based on Gesture Recognition (제스처 인식 기반의 인터랙티브 미디어 콘텐츠 제작 프레임워크 구현)

  • Koh, You-jin;Kim, Tae-Won;Kim, Yong-Goo;Choi, Yoo-Joo
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.545-559
    • /
    • 2020
  • In this paper, we propose a content creation framework that enables users without programming experience to easily create interactive media content that responds to user gestures. In the proposed framework, users define the gestures they use and the media effects that respond to them by numbers, and link them in a text-based configuration file. In the proposed framework, the interactive media content that responds to the user's gesture is linked with the dynamic projection mapping module to track the user's location and project the media effects onto the user. To reduce the processing speed and memory burden of the gesture recognition, the user's movement is expressed as a gray scale motion history image. We designed a convolutional neural network model for gesture recognition using motion history images as input data. The number of network layers and hyperparameters of the convolutional neural network model were determined through experiments that recognize five gestures, and applied to the proposed framework. In the gesture recognition experiment, we obtained a recognition accuracy of 97.96% and a processing speed of 12.04 FPS. In the experiment connected with the three media effects, we confirmed that the intended media effect was appropriately displayed in real-time according to the user's gesture.

Production Technology for Multi-face Convergence Performance (Multi-face Convergence 공연을 위한 제작 기술)

  • You, Mi;Son, Tae-Woong;Kim, Sang-Il
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.475-486
    • /
    • 2020
  • This paper is a thesis on media art technology for high-tech performances and exhibitions. After creating an interactive stroke in VR, it is projected in real time through a media facade technique. Among our traditional dramas emphasizing linear movements, movements were extracted from the Bongsan mask dance, and the movements of the lines were used in a media art performance called 'Multi-face Convergence'. When motion data enters the virtual space, geometry consisting of faces is created in the VR space. The created strokes can be set with various brush types, and when performing, a stroke with a red fire effect that matches a dynamic movement was used. It was made to be able to harmonize with the dancers performing the Bongsan mask dance. The medium called VR has characteristics that are not suitable for melting into a performance, but in this performance, it has overcome its limitations by using a technique called media façade. We propose the world's first performance technique that combines interactive strokes with traditional dance performances.

Development of a Chameleonic Pin-Art Equipment for Generating Realistic Solid Shapes (실감 입체 형상 생성을 위한 카멜레온형 핀아트 장치 개발)

  • Kwon, Ohung;Kim, Jinyoung;Lee, Sulhee;Kim, Juhea;Lee, Sang-won;Cho, Jayang;Kim, Hyungtae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.497-506
    • /
    • 2020
  • A chameleonic surface proposed in this study was a pin-art and 3D display device for generating arbitrary shapes. A smooth and continuous surface was formed using slim telescopic actuators and high-elasticity composite material. Realistic 3D shapes were continuously generated by projecting dynamic mapping images on the surface. A slim telescopic actuator was designed to show long strokes and minimize area for staking. A 3D shape was formed by thrusting and extruding the high-elasticity material using multiple telescopic actuators. This structure was advantageous for generating arbitrary continuous surface, projecting dynamic images and lightening weight. Because of real-time synchronization, a distributed controller based on EtherCAT was applied to operate hundreds of telescopic actuators smoothly. Integrated operating software consecutively generated realistic scenes by coordinating extruded shapes and projecting 3D image from multiple projectors. An opera content was optimized for the chameleon surface and showed to an audience in an actual concert.