Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.283-286
/
2021
4차 산업혁명을 맞이해 최근 산업 및 기술 영역에서는 인공지능을 이용한 생산력 향상, 자동화 등 딥러닝의 보편화가 빠르게 진행되고 있다. 또한, 딥러닝의 성능을 도출하기 위해서는 수많은 양의 학습용 데이터가 필요하며 그 데이터의 양은 딥러닝 모델의 성능과 정비례한다. 이에 본 작품은 최신형 영상처리 Library인 Albumentations를 이용하여 영상처리 알고리즘을 이용하여 이미지를 증강하고, 이미지 데이터 크롤링 기능을 통해 Web에서 영상 데이터를 수집을 자동화하며, Label Pix를 연동하여 수집한 데이터를 라벨링 한다. 더 나아가 라벨링 된 데이터의 증강까지 포함하여 다양한 증강 자동화를 한 인터페이스에 집적시켜 딥러닝 모델을 생성할 때 데이터 수집과 전처리를 수월하게 한다. 또한, Neural Net 기반의 AdaIN Transfer를 이용하여 이미지를 개별적으로 학습하지 않고 Real time으로 이미지의 스타일을 옮겨올 수 있도록 하여 그림 데이터의 부족 현상을 해결한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.215-217
/
2021
본 논문은 3D 공간에서 사용자를 추출한 뒤, 체적 정보 분석을 통한 3D 스켈레톤(skeleton) 분석 과정을 통해 정확도 높은 다수 사용자의 위치 추적 기술에 대해 연구하였다. 이를 위하여 YOLO(You Only Look Once)를 활용하여 실시간으로 객체를 검출(Real-Time Object Detection)한 뒤 Google의 Mediapipe를 활용해 스켈레톤 추출, 스켈레톤 정규화(normalization)를 통한 스켈레톤의 크기 및 상대적 비율 계산, RGB 영상 스케일링(Scaling) 후 주요 마디 인접 영역의 RGB 색상 정보를 추출하는 방법을 통해 정확도가 개선된 높은 성능의 다중 사용자 추적 기술을 연구하였다.
Park, Gyuri;Park, Nayeon;Kim, Seungwoo;Kim, Seunghye;Kim, Jinsan;Ko, Byungchul
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.232-234
/
2021
최근 휴먼-컴퓨터 인터페이스, 가상현식, 증강현실, 지능형 자동차등에서 얼굴표정 인식에 대한 연구가 활발히 진행되고 있다. 얼굴표정인식 연구는 대부분 맨얼굴을 대상으로 하고 있지만 최근 코로나-19로 인해 마스크 착용한 사람들이 많아지면서, 마스크를 착용했을 때의 표정인식에 대한 필요성이 증가하고 있다. 본 논문은 마스크를 착용했을 때에도 실시간으로 표정 분류가 가능한 시스템개발을 목표로 구동에 필요한 알고리즘을 조사했고, 그 중 Tiny-YOLOv3와 ResNet50 알고리즘을 이용하기로 했다. 얼굴과 표정 데이터셋 등에서 모은 이미지 데이터를 사용하여 실행해 보고 그 적절성 및 성능에 대해 평가해 보았다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.208-211
/
2021
본 논문에서는 합성곱 신경망을 활용하여 영상에서 마스크 착용 및 미착용 상태를 탐지하는 방법을 제안한다. 코로나바이러스감염증-19(COVID-19)의 유행에 따라 감염 및 확산방지를 위해 마스크 정상적 착용이 요구되는데 몇몇 사람들은 이를 지키지 않고 있으며 현재의 감시 시스템은 입구에서 마스크 착용 여부를 검사하는 방식으로 작동될 뿐 공간에 입장한 다음 착용 여부를 알 수 없다. 제안하는 방법은 합성곱 신경망을 통해 영상에서 얼굴을 탐지하여 얻은 데이터를 이용하여 다수사람들의 마스크 착용 및 미착용 상태를 판별하는 방법으로 설계하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.322-324
/
2021
최근 고주사율 디스플레이 시장 확대와 실감콘텐츠에 대한 요구에 따라, 높은 프레임율의 동영상 콘텐츠에 대한 관심이 증가하고 있다. 본 논문은 이용자의 비디오를 초슬로우 비디오로 변환해주는 웹 기반 서비스 시스템을 제안한다. 이는 사용자가 웹을 통해 비디오를 업로드하면, 딥러닝 기반의 비디오 프레임 보간 알고리즘을 이용하여 초고프레임율의 동영상으로 변환하며. 변환된 초저속 비디오를 웹을 통해 보여주거나 파일 포맷으로 제공한다. 제안 시스템은 복잡한 연산을 요구하는 딥러닝 네트워크 모듈과 사용자와의 상호작용을 위한 웹 페이지 모듈로 구성되었다. 프레임 보간을 위해서, State-of-the-art 기술인 딥러닝 기반의 Real-Time Intermediate Flow Estimation for Video Frame Interpolation 방법이 활용되었으며, 웹페이지는 HTML, CSS, Javascript, Flask를 사용하여 구축되었고, Flask를 활용하여 두 모듈이 연동되었다. 제안 웹 기반 시스템을 통해, 사용자는 딥러닝 네트워크 구동에 필요한 별도의 지식 없이 통신 자원만으로 고실감의 경험과 편의성을 제공받을 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.267-269
/
2020
입모양 인식(Lip Reading) 기술은 입술 움직임을 통해 발화를 분석하는 기술이다. 본 논문에서는 일상적으로 사용하는 10개의 상용구에 대해서 발화자의 안면 움직임 분석을 통해 실시간으로 분류하는 연구를 진행하였다. 시간상의 연속된 순서를 가진 영상 데이터의 특징을 고려하여 3차원 합성곱 신경망 (Convolutional Neural Network)을 사용하여 진행하였지만, 실시간 시스템 구현을 위해 연산량 감소가 필요했다. 이를 해결하기 위해 차 영상을 이용한 2차원 합성곱 신경망과 LSTM 순환 신경망 (Long Short-Term Memory) 결합 모델을 설계하였고, 해당 모델을 이용하여 실시간 시스템 구현에 성공하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.94-97
/
2020
코로나 시대에 도래하며 비접촉 방식의 생체 징후에 대한 관심이 증가하고 있다. 본 연구는 비접촉식 측정 방식으로써 모바일 전면 카메라를 이용하여 심장박동, 심장 박동 변이율, 산소포화도, 호흡도, 스트레스 수치를 측정할 수 있는 효과적인 방법론을 제시하는 것이 목적이다. 모바일 전면부 카메라에서 실시간으로 안면 영상을 추출하기 위하여 Blaze Face를 이용하였으며, 안면 영상의 특징점인 눈, 코, 입, 귀의 위치를 이용하여 이마 부분의 관심 영역을 지정하였다. 관심 영역에서 색상 성분을 R, G, B로 분리하여 시간 축으로 정렬 후 fourier transform을 진행한 후 각각의 성분들을 측정하고자 하는 생체 징후에 맞게 Filter 처리함으로써 생체 징후를 측정하였다. 안면 영상을 이용한 생체 징후 측정 결과를 검증에 활용하기 위하여 실측 기기인 mCube-Healthcare device를 이용하였으며, 분석 결과 모바일에서 안면 영상을 통해 심장박동, 삼장 박동 변이율, 산소포화도, 호흡도, 스트레스 수치의 다섯 가지 생체 징후를 추출할 수 있는 가능성을 확인하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.18-20
/
2020
본 연구에서는 고차원 데이터에 대한 차원축소 및 군집 분석과 같은 비지도 학습 알고리즘에 대해 알아보기 위해서 얼굴 이미지 데이터 셋을 사용한다. 얼굴 데이터 셋에 대하여 주요 비지도 학습 알고리즘을 이용하여 실시간으로 클러스터링하고, 그 성능을 비교한다. 비디오에서 추출된 영상 속의 7명의 인물에 대하여 Scikit-learning 라이브러리에서 제공하는 클러스터링 알고리즘과 더불어 주요 차원축소 알고리즘(Dimension Reduction Algorithm)을 사용하여 총 10개의 알고리즘에 대하여 분석한다. 또한, 클러스터링 성능 검사를 통해 알고리즘의 성능을 비교해보고, 이를 통하여 앞으로의 연구 방향에 대해 고찰한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.228-229
/
2020
최근 딥러닝 기술은 여러 컴퓨터 비전 응용 분야에서 많이 쓰이고 있다. 물체 인식, 분류 및 영상 생성 등을 예로 들 수 있다. 특히 초고해상도 변환 문제에서 최근 딥러닝을 사용하면서 큰 성능 개선을 얻고 있다. Fast super-resolution convolutional neural network (FSRCNN)은 딥러닝 기반 초고해상도 알고리즘으로 잘 알려져 있으며, 여러 개의 convolutional layer로 추출한 저 해상도의 입력 특징을 활용하여 deconvolutional layer에서 초고해상도의 영상을 출력하는 알고리즘이다. 본 논문에서는 병렬 연산 효율성을 고려한 FPGA 기반 convolutional neural networks 가속기를 제안한다. 특히 deconvolutional layer를 convolutional layer로 변환하는 방법을 통해서 에너지 효율적인 가속기를 설계했다. 또한 제안한 방법은 FPGA 리소스를 고려하여 FSRCNN의 구조를 변형한 Optimal-FSRCNN을 제안한다. 사용하는 곱셈기의 개수를 FSRCNN 대비 2.4 배 압축하였고, 초고해상도 변환 성능을 평가하는 지표인 PSNR은 FSRCNN과 비슷한 성능을 내고 있다. 이를 통해서 FPGA 에 최적화된 네트워크를 구현하여 FHD 입력 영상을 UHD 영상으로 출력하는 실시간 영상처리 기술을 개발했다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.286-289
/
2020
본래 대중문화는 그 자체로 '집단(Mass)'의 의미가 들어있다. 하나의 방송콘텐츠는 PD, 작가, 출연자와 방송 스텝들은 물론이고 관객들까지 참여함으로써 완성된다. 하지만 방송의 이런 집단 창작 시스템은 코로나19 같은 전 세계적인 감염병 유행 앞에서 유례없는 변화를 가져왔고, 쉽게 가라앉지 않는 감염병으로 랜선 콘서트, 라이브 뮤지컬 등 여러 언택트 시스템(Untact System)이 시도되어지고 있다. 본 논문에서는 언택트 시스템(Untact System)의 도입으로 변화하는 방송에 대해 알아보고, 라이브 방송 시스템을 설계한다.[2]
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.