• Title/Summary/Keyword: real-scale structure

Search Result 298, Processing Time 0.024 seconds

Real-scale field testing for the applicability examination of an improved modular underground arch culvert with vertical walls

  • Tae-Yun Kwon;Jin-Hee Ahn;Hong-duk Moon;Kwang-Il Cho;Jungwon Huh
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.377-389
    • /
    • 2023
  • In this study, an improved modular arch system with the lower arch space composed of a precast arch block and an outrigger was proposed as an underground culvert, and its applicability and structural behaviors were confirmed. This modular arch culvert structure with vertical walls was designed using precast blocks and by adjusting the placement spacing of concrete blocks to the upper part form an arch shape and the lower part form a vertical wall shape, based on previously researched modular arch systems. Owing to the vertical wall of the proposed modular arch system, it is possible to secure a load-carrying capacity and an arch space that can sufficiently resist the earth pressure generated from the backfill soil and loading on the arch system. To verify the structural characteristics, and applicability of the proposed modular precast arch culvert structure, a full-scale modular culvert specimen was fabricated, and a loading test was conducted. By examining its construction process and loading test results, the applicability and constructability of the proposed structure were analyzed along with its structural characteristics. In addition, its the structural predictability and safety for the applicability were evaluated by comparing the construction process and loading test results with the FE analysis results.

Real-time structural damage detection using wireless sensing and monitoring system

  • Lu, Kung-Chun;Loh, Chin-Hsiung;Yang, Yuan-Sen;Lynch, Jerome P.;Law, K.H.
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.759-777
    • /
    • 2008
  • A wireless sensing system is designed for application to structural monitoring and damage detection applications. Embedded in the wireless monitoring module is a two-tier prediction model, the auto-regressive (AR) and the autoregressive model with exogenous inputs (ARX), used to obtain damage sensitive features of a structure. To validate the performance of the proposed wireless monitoring and damage detection system, two near full scale single-story RC-frames, with and without brick wall system, are instrumented with the wireless monitoring system for real time damage detection during shaking table tests. White noise and seismic ground motion records are applied to the base of the structure using a shaking table. Pattern classification methods are then adopted to classify the structure as damaged or undamaged using time series coefficients as entities of a damage-sensitive feature vector. The demonstration of the damage detection methodology is shown to be capable of identifying damage using a wireless structural monitoring system. The accuracy and sensitivity of the MEMS-based wireless sensors employed are also verified through comparison to data recorded using a traditional wired monitoring system.

Real-time Hybrid Testing a Building Structure Equipped with Full-scale MR dampers and Application of Semi-active Control Algorithms (대형 MR감쇠기가 설치된 건축구조물의 실시간 하이브리드 실험 및 준능동 알고리즘 적용)

  • Park, Eun-Churn;Lee, Sung-Kyung;Lee, Heon-Jae;Moon, Suk-Jun;Jung, Hyung-Jo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.465-474
    • /
    • 2008
  • The real-time hybrid testing method(RT-HYTEM) is a structural testing technique in which the numerical integration of the equation of motion for a numerical substructure and the physical testing for an experimental substructure are performed simultaneously in real-time. This study presents the quantitative evaluation of the seismic performance of a building structure installed with an passive and semi-active MR damper by using RT-HYTEM. The building model that was identified from the force-vibration testing results of a real-scaled 5-story building is used as the numerical substructure, and an MR damper corresponding to an experimental substructure is physically tested by using the universal testing machine(UTM). The RT-HYTEM implemented in this study is validated because the real-time hybrid testing results obtained by application of sinusoidal and earthquake excitations and the corresponding analytical results obtained by using the Bouc-Wen model as the control force of the MR damper respect to input currents were in good agreement. Also for preliminary study, some semi-active control algorithms were applied to the MR damper in order to control the structural responses optimally. Comparing between the test results of semi-active control using RT-HYTEM and numerical analysis results show that the RT-HYTEM is more resonable than numerical analysis to evaluate the performance of semi-active control algorithms.

SHM benchmark for high-rise structures: a reduced-order finite element model and field measurement data

  • Ni, Y.Q.;Xia, Y.;Lin, W.;Chen, W.H.;Ko, J.M.
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.411-426
    • /
    • 2012
  • The Canton Tower (formerly named Guangzhou New TV Tower) of 610 m high has been instrumented with a long-term structural health monitoring (SHM) system consisting of over 700 sensors of sixteen types. Under the auspices of the Asian-Pacific Network of Centers for Research in Smart Structures Technology (ANCRiSST), an SHM benchmark problem for high-rise structures has been developed by taking the instrumented Canton Tower as a host structure. This benchmark problem aims to provide an international platform for direct comparison of various SHM-related methodologies and algorithms with the use of real-world monitoring data from a large-scale structure, and to narrow the gap that currently exists between the research and the practice of SHM. This paper first briefs the SHM system deployed on the Canton Tower, and the development of an elaborate three-dimensional (3D) full-scale finite element model (FEM) and the validation of the model using the measured modal data of the structure. In succession comes the formulation of an equivalent reduced-order FEM which is developed specifically for the benchmark study. The reduced-order FEM, which comprises 37 beam elements and a total of 185 degrees-of-freedom (DOFs), has been elaborately tuned to coincide well with the full-scale FEM in terms of both modal frequencies and mode shapes. The field measurement data (including those obtained from 20 accelerometers, one anemometer and one temperature sensor) from the Canton Tower, which are available for the benchmark study, are subsequently presented together with a description of the sensor deployment locations and the sensor specifications.

Mapping the real-space distributions of galaxies in SDSS DR7

  • Shi, Feng
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.78.1-78.1
    • /
    • 2019
  • Using a method to correct redshift space distortion (RSD) for individual galaxies, we mapped the real space distributions of galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7(DR7). We use an ensemble of mock catalogs to demonstrate the reliability of this extension, showing that it allows for an accurate recovery of the real-space correlation functions and galaxy biases. We also demonstrate that, using an iterative method applied to intermediate scale clustering data, we can obtain an unbiased estimate of the growth rate of structure $f\sigma_8$, which is related to the clustering amplitude of matter, to an accuracy of $\sim 10\%$. Applying this method to the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7), we construct a real-space galaxy catalog spanning the redshift range $0.01 \leq z \leq 0.2$, which contains 584,473 galaxies in the North Galactic Cap (NGC). Using this data we, infer $0.376 \pm 0.038$ at a median redshift z=0.1, which is consistent with the WMAP9 cosmology at $1\sigma$ level. By combining this measurement with the real-space clustering of galaxies and with galaxy-galaxy weak lensing measurements for the same sets of galaxies, we are able to break the degeneracy between $f$, $\sigma_8$ and $b$. From the SDSS DR7 data alone, we obtain the following cosmological constraints at redshift $z=0.1$ for galaxies.

  • PDF

Application of Automated Measuring System for the Underground Construction in Urban Area (도심지 근접시공의 자동계측응용)

  • 남순성;정상용
    • Explosives and Blasting
    • /
    • v.15 no.2
    • /
    • pp.53-72
    • /
    • 1997
  • It is impossible to precat the behavior of ground soil and structure accurately during underground construction in urban area or excavation in soft ground area because of difference between the assumed design condition and the actual site condition. Therefore, it must be managed by measuring system and correct the difference by real data. Large scale under ground construction in urban area like a seoul subway project has needed for Intelligent Construction technique, a field of the Engineering Contractor. The automated measuring system is developed for the technique. It is described that the procedure and the method of measuring work with application of the automated measuring system.

  • PDF

Coherent Combination of Baryon Acoustic Oscillation Statistics and Peculiar Velocity Measurements from Redshift Survey

  • Song, Yong-Seon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.46.1-46.1
    • /
    • 2011
  • New statistical method is proposed to coherently combine Baryon Acoustic Oscillation statistics (BAO) and peculiar velocity measurements exploiting decomposed density--density and velocity--velocity spectra in real space from the observed redshift distortions in redshift space, 1) to achieve stronger dark energy constraints, sigma(w)=0.06 and sigma(w_a)=0.20, which are enhanced from BAO or velocity measurements alone, and 2) to cross--check consistency of dark energy constraints from two different approaches; BAO as geometrical measurements and peculiar velocity as large scale structure formation observables.

  • PDF

Real-scale Accelerated Testing to Evaluate Long-term Performance for Bridge/Earthwork Transition Structure Reinforced by Geosynthetics and Cement Treated Materials (토목섬유와 시멘트처리채움재로 보강한 교량/토공 접속구조의 장기공용성 평가를 위한 실물가속시험)

  • Lee, Il-Wha;Choi, Won-Il;Cho, Kook-Hwan;Lee, Kang-Myung;Min, Kyung-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.251-259
    • /
    • 2014
  • The transition zone between an earthwork and a bridge effect to the vehicle's running stability because support stiffness of the roadbed is suddenly changed. The design criteria for the transition structure on ballast track were not particular in the past. However with the introduction of concrete track is introduced, it requires there is a higher performance level required because of maintenance and running stability. In this present paper, a transition structure reinforced with geosynthetics is suggested to improve the performance of existing bridge-earthwork transition structures. The suggested transition structure, in which there is reinforcing of the approach block using high-tension geosynthetics, has a structure similar to that of earth reinforced abutments. The utilized backfill materials are cement treated soil and gravel. These materials are used to reduce water intrusion into the approach block and to increase the recycling of surplus earth materials. An experiment was performed under the same conditions in order to allow a comparison of this new structure with the existing transition structure. Evaluation items are elastic displacement, cumulative settlement, and earth pressure. As for the results of the real-scale accelerated testing, the suggested transition structure has excellent performance for the reduction of earth pressure and settlement. Above all, it has high resistance the variation of the water content.

Implementation of 3D Structure Reconstruction System Using Geometric Primitives (원시기하도형을 이용한 3차원구조 복원시스템의 구현)

  • 남현석;구본기;진성일
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.237-240
    • /
    • 2003
  • We implement a system for 3D structure reconstruction from multiple 2D images. It uses geometric primitives such as box, wedge, pyramid, etc, each having translation, rotation, and scale parameters. Primitives are marked on input images with GUI (Graphic User Interface). Lines made by projection of primitives onto an image correspond to marked line segments of the image. Error function is defined by disparity between them and is minimized by downhill simplex method. By assigning relationship between models, the number of parameters to solve can be decreased and the resultant models become more accurate To share variables among other models also reduces computational complexity. Experiments using real images have shown that the proposed method successfully reconstructs 3D structure.

  • PDF

Electrical Structure Analysis of Ground using Various Methods for Resistivity Measurement (다양한 측정방법을 적용한 대지의 전기적 구조해석)

  • Jo, Sung-Chul;Lee, Tae-Hyung;Eom, Ju-Hong;Lee, Bok-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1492-1493
    • /
    • 2006
  • Wenner 4-probe arrangement is used most widely by the method to measure soil resistivity and the measured data with the Wenner method are apparent resistivities of the soil. Therefore, the soil structure can be analyzed easily from the measured apparent resistivity, but the real soil resistivity is difficult to know correctly at a particular depth or at a specific location on earth surface. This paper introduces a method that can be used to decide the suitable burial depth and the electrode scale of a grounding rod effectively using soil structure analysis equipment based on the dipole-dipole method.

  • PDF