• Title/Summary/Keyword: real time systems

Search Result 6,582, Processing Time 0.036 seconds

An Optimization Technique in Memory System Performance for RealTime Embedded Systems (실시간 임베디드 시스템을 위한 메모리 시스템 성능 최적화 기법)

  • Yongin Kwon;Doosan Cho;Jongwon Lee;Yongjoo Kim;Jonghee Youn;Sanghyun Park;Yunheung Paek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.882-884
    • /
    • 2008
  • 통상 하드웨어 캐시의 크기보다 수십에서 수백배 큰 크기의 데이타를 랜덤하게 접근하는 경우 낮은 메모리 접근 지역성(locality)에 기인하여 캐시 메모리 성능이 급격히 저하되는 문제를 야기한다. 예를 들면, 현재 보편적으로 사용되고 있는 차량용 General Positioning System (GPS) 프로그램의 경우 최대 32개의 위성으로부터 데이터를 받아 수신단의 위치를 계산하는 부분이 핵심 모듈중의 하나 이며, 이는 전체 성능의 50% 이상을 차지한다. 이러한 모듈에서는 위성 신호를 실시간으로 받아 버퍼 메모리에 저장하며, 이때 필요한 데이터가 순차적으로 저장되지 못하기 때문에 랜덤하게 데이터를 읽어 사용하게 된다. 결과적으로 낮은 지역성에 기인하여 실시간 (realtime)안에 데이터 처리를 하기 어려운 문제에 직면하게 된다. 통상의 통신 응용의 알고리즘 상에 내재된(inherited) 낮은 메모리 접근 지역성을 개선하는 것은 알고리즘 상에서의 접근을 요구한다. 이는 높은 비용이 필요함으로 본 연구에서는 사용되는 데이터 구조를 변환하여 지역성을 높이는 방향으로 접근하였다. 결과적으로 핵심 모듈에서 2배, 전체 시스템 성능에서 14%를 개선할 수 있었다.

Cyber Threat Intelligence Traffic Through Black Widow Optimisation by Applying RNN-BiLSTM Recognition Model

  • Kanti Singh Sangher;Archana Singh;Hari Mohan Pandey
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.99-109
    • /
    • 2023
  • The darknet is frequently referred to as the hub of illicit online activity. In order to keep track of real-time applications and activities taking place on Darknet, traffic on that network must be analysed. It is without a doubt important to recognise network traffic tied to an unused Internet address in order to spot and investigate malicious online activity. Any observed network traffic is the result of mis-configuration from faked source addresses and another methods that monitor the unused space address because there are no genuine devices or hosts in an unused address block. Digital systems can now detect and identify darknet activity on their own thanks to recent advances in artificial intelligence. In this paper, offer a generalised method for deep learning-based detection and classification of darknet traffic. Furthermore, analyse a cutting-edge complicated dataset that contains a lot of information about darknet traffic. Next, examine various feature selection strategies to choose a best attribute for detecting and classifying darknet traffic. For the purpose of identifying threats using network properties acquired from darknet traffic, devised a hybrid deep learning (DL) approach that combines Recurrent Neural Network (RNN) and Bidirectional LSTM (BiLSTM). This probing technique can tell malicious traffic from legitimate traffic. The results show that the suggested strategy works better than the existing ways by producing the highest level of accuracy for categorising darknet traffic using the Black widow optimization algorithm as a feature selection approach and RNN-BiLSTM as a recognition model.

The Integration of Smart Disaster Site Support System and Prototype Simulation for Effective Disaster Response (효율적 재난대응을 위한 스마트 재난현장지원시스템 통합방안 및 프로토타입 시뮬레이션)

  • Park, Hyunchul;Park, Seona;Lee, Jinsoo;Pyeon, Muwook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.831-839
    • /
    • 2023
  • The purpose of this study is to quickly collect and analyze information generated in real-time at disaster sites to propose an integrated plan for an on-site support system that can support accurate disaster site situation identification and decision-making, and to review field applicability through prototype simulation. Accordingly, information collection, sharing, and convergence technologies that can be used at disaster sites were reviewed, and a plan for integrating a smart disaster site support system that can create an efficient flow of information resources and information necessary for the entire stage of disaster management was presented. In order to examine the possibility of operating the system with a prototype manufactured based on the integration plan, simulations were conducted based on the storm and flood disaster scenario, and it was confirmed that various functions in the system were implemented normally and displayed on the GIS situation board. Through this study, it is expected that efficient and active disaster response will be possible in a rapidly changing disaster environment.

A Digital Forensic Framework Design for Joined Heterogeneous Cloud Computing Environment

  • Zayyanu Umar;Deborah U. Ebem;Francis S. Bakpo;Modesta Ezema
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.207-215
    • /
    • 2024
  • Cloud computing is now used by most companies, business centres and academic institutions to embrace new computer technology. Cloud Service Providers (CSPs) are limited to certain services, missing some of the assets requested by their customers, it means that different clouds need to interconnect to share resources and interoperate between them. The clouds may be interconnected in different characteristics and systems, and the network may be vulnerable to volatility or interference. While information technology and cloud computing are also advancing to accommodate the growing worldwide application, criminals use cyberspace to perform cybercrimes. Cloud services deployment is becoming highly prone to threats and intrusions. The unauthorised access or destruction of records yields significant catastrophic losses to organisations or agencies. Human intervention and Physical devices are not enough for protection and monitoring of cloud services; therefore, there is a need for more efficient design for cyber defence that is adaptable, flexible, robust and able to detect dangerous cybercrime such as a Denial of Service (DOS) and Distributed Denial of Service (DDOS) in heterogeneous cloud computing platforms and make essential real-time decisions for forensic investigation. This paper aims to develop a framework for digital forensic for the detection of cybercrime in a joined heterogeneous cloud setup. We developed a Digital Forensics model in this paper that can function in heterogeneous joint clouds. We used Unified Modeling Language (UML) specifically activity diagram in designing the proposed framework, then for deployment, we used an architectural modelling system in developing a framework. We developed an activity diagram that can accommodate the variability and complexities of the clouds when handling inter-cloud resources.

Designing Bigdata Platform for Multi-Source Maritime Information

  • Junsang Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.111-119
    • /
    • 2024
  • In this paper, we propose a big data platform that can collect information from various sources collected at ocean. Currently operating ocean-related big data platforms are focused on storing and sharing created data, and each data provider is responsible for data collection and preprocessing. There are high costs and inefficiencies in collecting and integrating data in a marine environment using communication networks that are poor compared to those on land, making it difficult to implement related infrastructure. In particular, in fields that require real-time data collection and analysis, such as weather information, radar and sensor data, a number of issues must be considered compared to land-based systems, such as data security, characteristics of organizations and ships, and data collection costs, in addition to communication network issues. First, this paper defines these problems and presents solutions. In order to design a big data platform that reflects this, we first propose a data source, hierarchical MEC, and data flow structure, and then present an overall platform structure that integrates them all.

A Study on the Operation and System Improvement of Cyber Security Center (사이버보안관제센터 운영 및 제도 개선에 관한 연구)

  • Hoo-Ki Lee
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.39-45
    • /
    • 2024
  • The purpose of security control in the public sector is to secure the safety of administrative services for the public by preventing resource loss or information infringement in information systems and information and communication networks. The security control system is a process that performs real-time detection, analysis, response, and reporting through system vulnerability analysis and security system detection pattern optimization. This study aims to objectively identify the current situation of the mismatch between the supply and demand of cyber security control centers currently in operation and specialized security control companies that can be entrusted to operate them, and to derive and propose practical and institutional improvement measures. Considering that the operation of security control centers in the public sector is expected to increase in the future, research on the practical supplementation required for the operation process of security control centers and the improvement of the designation system of security control specialized organizations has fundamental and timely significance, and it is an area that requires continuous research in terms of strategic industrialization.

Development of a Multi-disciplinary Video Identification System for Autonomous Driving (자율주행을 위한 융복합 영상 식별 시스템 개발)

  • Sung-Youn Cho;Jeong-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.65-74
    • /
    • 2024
  • In recent years, image processing technology has played a critical role in the field of autonomous driving. Among them, image recognition technology is essential for the safety and performance of autonomous vehicles. Therefore, this paper aims to develop a hybrid image recognition system to enhance the safety and performance of autonomous vehicles. In this paper, various image recognition technologies are utilized to construct a system that recognizes and tracks objects in the vehicle's surroundings. Machine learning and deep learning algorithms are employed for this purpose, and objects are identified and classified in real-time through image processing and analysis. Furthermore, this study aims to fuse image processing technology with vehicle control systems to improve the safety and performance of autonomous vehicles. To achieve this, the identified object's information is transmitted to the vehicle control system to enable appropriate autonomous driving responses. The developed hybrid image recognition system in this paper is expected to significantly improve the safety and performance of autonomous vehicles. This is expected to accelerate the commercialization of autonomous vehicles.

Design for Proximity Voice Chat System in Multimedia Environments

  • Jae-Woo Chang;Jin-Woong Kim;Soo Kyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.83-90
    • /
    • 2024
  • In this paper, we propose a solution to apply a proximity voice dialog system to voice dialog technology, one of the interaction systems in multimedia environments. A voice dialog between multiple users in a multimedia space is designed by adjusting the volume of the voice according to the distance between the user avatars and muting the user who is beyond the audible distance. The main feature of this research is a reliable UDP-based active server system that delivers low-quality voice data to users who are far away based on distance and does not transmit voice data to users who enter the inaudible area for economic development. The performance of the proposed system was measured in a previously completed project based on the Unity game engine, and it is expected that the system proposed in this research will be actively used in environments that provide interaction between multiple users such as met averse content and real-time battle action games.

Link Quality Enhancement with Beamforming Using Kalman-based Motion Tracking for Maritime Communication

  • Kyeongjea Lee;Joo-Hyun Jo;Sungyoon Cho;Kiwon Kwon;Dong Ku Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1659-1674
    • /
    • 2024
  • Conventional maritime communication struggles to provide high data rate services for Internet of Things (IoT) devices due to the variability of maritime environments, making it challenging to ensure consistent connectivity for onboard sensors and devices. To resolve this, we perform mathematical modeling of the maritime channel and compare it with real measurement data. Through the modeled channel, we verify the received beam gain at buoys on the ocean surface. Additionally, leveraging the modeled wave motions, we estimate future angles of the buoy to use the Extended Kalman Filter (EKF) for design beamforming strategies that adapt to the evolving maritime environment over time. We further validate the effectiveness of these strategies by assessing the results from an outage probability perspective. focuses on improving maritime communication by developing a dynamic model of the maritime channel and implementing a Kalman filter-based buoy motion tracking system. This system is designed to enable precise beamforming, a technique used to direct communication signals more accurately. By improving beamforming, the aim is to enhance the quality of communication links, even in challenging maritime conditions like rough seas and varying sea states. In our simulations that consider realistic wave motions, you've observed significant improvements in link quality due to the enhanced beamforming technique. These improvements are particularly notable in environments with high sea states, where communication challenges are typically more pronounced. The progress made in this area is not just a technical achievement; it has broad implications for the future of maritime communication technologies. This paper promises to revolutionize the way we approach communication in maritime environments, paving the way for more reliable and efficient information exchange on the seas.

Development of Rice Yield Prediction System of Head-Feed Type Combine Harvester (자탈형 콤바인의 실시간 벼 수확량 예측 시스템 개발)

  • Sang Hee Lee;So Young Shin;Deok Gyu Choi;Won-Kyung Kim;Seok Pyo Moon;Chang Uk Cheon;Seok Ho Park;Youn Koo Kang;Sung Hyuk Jang
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.36-43
    • /
    • 2024
  • The yield is basic and necessary information in precision agriculture that reduces input resources and enhances productivity. Yield information is important because it can be used to set up farming plans and evaluate farming results. Yield monitoring systems are commercialized in the United States and Japan but not in Korea. Therefore, such a system must be developed. This study was conducted to develop a yield monitoring system that improved performance by correcting a previously developed flow sensor using a grain tank-weighing system. An impact-plated type flow sensor was installed in a grain tank where grains are placed, and grain tank-weighing sensors were installed under the grain tank to estimate the weight of the grain inside the tank. The grain flow rate and grain weight prediction models showed high correlations, with coefficient of determinations (R2) of 0.9979 and 0.9991, respectively. A main controller of the yield monitoring system that calculated the real-time yield using a sensor output value was also developed and installed in a combine harvester. Field tests of the combine harvester yield monitoring system were conducted in a rice paddy field. The developed yield monitoring system showed high accuracy with an error of 0.13%. Therefore, the newly developed yield monitoring system can be used to predict grain weight with high accuracy.