본 논문에서는 액티브 블록을 사용하여 하나의 움직이는 물체를 효율적으로 검출하고 추적하는 방법에 대해 제안한다. 이것은 특정한 픽셀 값을 대표값으로 추출하여 8*8 픽셀 값들을 대표하는 방식을 사용하고, 인접한 명암차에 의한 차영상 정보를 비교, 분석하여 움직이는 물체를 검출한다. 이미지 데이터 획득 부분은 소프트웨어로 처리함으로써 하드웨어의 비중을 크게 감소시켰으며, 고해상도 이미지를 저해상도 이미지로 변환하여 획득해야 할 데이터 수를 대폭 줄임으로써 실시간으로 이동하는 물체를 추적할 수 있도록 하였다. 따 라서 이미지에 대한 모든 픽셀 값 정보나 비디오 인터페이스 카드 제어를 위한 가상 드라이버와 같은 특정 목적의 시스템 드라이버가 없는 간단한 시스템에서도 움직이는 물체를 실시간으로 추적할 수 있도록 충분한 속도를 제공하며 개인용 컴퓨터상에서도 저렴한 비용으로 고정 영역 내의 움직이는 단일 이동 물체 추적 시스템을 구축할 수 있다.
본 논문에서는 비디오에서 비보정 3차원 좌표의 복원과 카메라의 움직임 추정을 통하여 가상 객체를 비디오에 자연스럽게 합성하는 방법을 제안한다. 비디오의 장면에 부합되도록 가상 객체를 삽입하기 위해서는 장면의 상대적인 구조를 얻어야 하고 비디오 프레임의 흐름에 따른 카메라 움직임의 변화도 추정해야 한다. 먼저 특장점을 추적하고 비보정 절차를 수행하여 카메라 파라메터와 3차원 구조를 복원한다. 각 프레임에서 카메라 파라메터들을 고정시켜 촬영하고 이들 카메라 파라메터는 일정 프레임 동안 불변으로 가정하였다. 제안된 방법으로 세 프레임 이상에서 작은 수의 특징점 만으로도 올바른 3차원 구조를 얻을 수 있었다. 가상객체의 삽입 위치는 초기 프레임에서 특정 면의 모서리점의 대응점을 지정하여 결정한다. 가상 객체의 투사 영역을 계산하고 이 영역에 이음새가 없도록 텍스처를 혼합하여 가상객체와 비디오의 부자연스러운 합성 문제를 해결하였다. 제안 방법은 비보정 절차를 선형으로만 구현하여 기존의 방법에 비해서 안정성과 수행속도의 면에서 우수하다. 실제 비디오 스트림에 대한 다양한 실험을 수행한 결과 여러 증강현실 응용 시스템에 유용하게 사용될 수 있음을 입증하였다.
본 논문에서는 실시간으로 보행자를 추적할 때 배경 제거를 이용하여 변형된 HOG(Histogram of Oriented Gradients) 특징 추출을 제안하였다. 기존의 HOG 특징 추출은 연산량이 많아 추적 속도가 느린 문제가 있다. 배경 제거를 통해 연산량 감소와 추적률을 향상시키기 위해 연구하였다. 불필요한 영역에서의 특징 추출을 감소시키기 위해 HSV 색공간에서 S 채널과 V 채널을 이용하여 영역 제거를 진행하였다. 영상의 평균 S 채널과 V 채널로 배경 제거 후 입력 영상이 전체적으로 어두워 객체 추적에 실패하는 경우가 있다. 이러한 경우를 방지하기 위해 히스토그램 평활화를 하였다. 제거된 영역에서 추출되는 HOG 특징이 감소되고, 객체에서는 명확한 HOG 특징이 추출되어 객체 추적 속도와 추적률이 향상되었다. 본 실험에서는 다수의 보행자나 한명의 보행자가 존재하는 영상, 배경이 복잡한 영상, 흔들림이 심한 영상을 가지고 실험하였다. 제안하는 방법은 기존의 HOG-SVM 방법과 비교하여 처리 속도는 약 41.84% 향상되었으며 오 추적률은 약 52.29% 감소되어 개선된 추적률을 보였다.
다중 객체 추적이란 컴퓨터 비전의 한 분야로, 주어진 비디오 시퀀스 내에서 관심 있는 객체들을 추적하는 것을 말한다. 다중 객체 추적 시스템은 감시 시스템, 사용자 행동 인식, 스포츠 중계, 비디오 회의와 같은 다양한 응용 분야에 핵심 기반 기술로 쓰이고 있어 그 중요성이 매우 크다. 본 논문은 감시 목적의 다중 객체를 추적하는 방법에 대하여 다룬다. 감시 시스템의 특성상, 객체의 외관이나 움직임 등에 대한 가정을 하기가 어렵다. 따라서 본 논문에서는 크기, 색, 형태 같은 객체의 단순하고 직관적인 외관 특성을 이용하면서도, 객체들끼리 부분적으로 혹은 완전히 겹쳐졌을 때에도 객체들의 위치를 적절히 추적할 수 있는 방법을 제안한다. 본 논문에서 제안하는 방법은 객체들의 경로에 대한 정보를 유지하는데 그래프 구조를 이용한다. 그래프를 확장하고, 제거하여 영상에 대한 정보를 추론한다. 크게 보면 객체들을 영역 레벨, 객체 레벨 두 단계에 걸쳐 추적한다. 영역 레벨에서는 각 객체들이 있을 수 있을만한 영역에 대한 가설을 세우고, 객체 레벨에서는 각 가설에 대한 검증을 한다. 제안된 방법은 직관적인 정보만을 이용하여 서로 다른 형태의 객체를 빠르게 추적할 수 있음을 보여준다. 다만 객체의 외관 정보만을 이용하였기 추적하기 때문에, 객체가 다른 객체에 의해 완전히 가려진 채 또다시 다른 객체와 겹쳐지면, 정확한 추적이 되지 않는다. 이를 해결하기 위해서는 객체가 겹쳐졌을 때, 그 관계에 대한 정보를 모아야 하는데 이는 향후 연구를 통해 해결하고자 한다.
독거노인이 증가하면서 낙상 사고 빈도도 높아지고 있다. 낙상은 노인들의 건강을 위협할 뿐만 아니라, 독립적인 생활을 위협할 수 있다. 이 문제를 해결하기 위해서는 독거노인의 위급한 상태를 인식하고 대응할 수 있는 실시간 기술이 필요하다. 따라서 본 논문은 독거노인을 위해 긴급 상황 중 하나인 낙상을 실시간으로 확인할 수 있는 YOLO-KCF를 기반 개선된 낙상 감지 알고리즘을 제안한다. YOLO는 물체의 검출뿐 아니라 서 있는 행동과 쓰러지는 행동 유행을 감지할 수 있다. 따라서 본 논문은 서 있는 행동 유형과 쓰러지는 행동 유형간의 경계 박스의 형태 변화를 이용하여 낙하를 검출할 수 있으며, KCF의 단점을 개선할 수 있다.
본 논문은 실시간 영상 분석을 통해서 산업현장에서 활동하는 여러 근로자의 영상 객체를 추출해 내고, 추출된 이미지로 부터 개별 영상 분석을 통해 헬멧의 착용 여부와 낙상 사고 여부를 확인하는 방법을 구현한다. 근로자의 영상 객체를 탐지하기 위해서 딥러닝 기반 컴퓨터 비전 모델인 YOLO를 사용하였으며, 추출된 이미지를 이용하여 헬멧의 착용여부를 판단하기 위해 따로 5,000장의 다양한 헬멧 학습 데이터 이미지를 만들어서 사용하였다. 또한, 낙상사고 여부를 판단하기 위해서 Mediapipe의 Pose 실시간 신체추적 알고리즘을 사용하여 머리의 위치를 확인하고 움직이는 속도를 계산하여 쓰러짐 여부를 판단하였다. 결과에 신뢰성을 주기위한 방법으로 YOLO의 바운딩 박스의 크기를 구하여 객체의 자세를 유추하는 방법을 추가하고 구현하였다. 최종적으로 관리자에게 알림 서비스를 위하여 텔레그램 API Bot과 Firebase DB 서버를 구현하였다.
Kim, Youngkwang;Park, Sang-Young;Lee, Eunji;Kim, Minsik
Journal of Astronomy and Space Sciences
/
제34권2호
/
pp.139-151
/
2017
This paper presents an overview of deep space orbit determination software (DSODS), as well as validation and verification results on its event prediction capabilities. DSODS was developed in the MATLAB object-oriented programming environment to support the Korea Pathfinder Lunar Orbiter (KPLO) mission. DSODS has three major capabilities: celestial event prediction for spacecraft, orbit determination with deep space network (DSN) tracking data, and DSN tracking data simulation. To achieve its functionality requirements, DSODS consists of four modules: orbit propagation (OP), event prediction (EP), data simulation (DS), and orbit determination (OD) modules. This paper explains the highest-level data flows between modules in event prediction, orbit determination, and tracking data simulation processes. Furthermore, to address the event prediction capability of DSODS, this paper introduces OP and EP modules. The role of the OP module is to handle time and coordinate system conversions, to propagate spacecraft trajectories, and to handle the ephemerides of spacecraft and celestial bodies. Currently, the OP module utilizes the General Mission Analysis Tool (GMAT) as a third-party software component for high-fidelity deep space propagation, as well as time and coordinate system conversions. The role of the EP module is to predict celestial events, including eclipses, and ground station visibilities, and this paper presents the functionality requirements of the EP module. The validation and verification results show that, for most cases, event prediction errors were less than 10 millisec when compared with flight proven mission analysis tools such as GMAT and Systems Tool Kit (STK). Thus, we conclude that DSODS is capable of predicting events for the KPLO in real mission applications.
International Journal of Control, Automation, and Systems
/
제6권3호
/
pp.453-459
/
2008
The neural network is currently being used throughout numerous control system fields. However, it is not easy to obtain an input-output pattern when the neural network is used for the system of a single feedback controller and it is difficult to obtain satisfactory performance with when the load changes rapidly or disturbance is applied. To resolve these problems, this paper proposes a new mode to implement a neural network controller by installing a real object for control and an algorithm for this, which can replace the existing method of implementing a neural network controller by utilizing activation function at the output node. The real plant object for controlling of this mode implements a simple neural network controller replacing the activation function and provides the error back propagation path to calculate the error at the output node. As the controller is designed using a simple structure neural network, the input-output pattern problem is solved naturally and real-time learning becomes possible through the general error back propagation algorithm. The new algorithm applied neural network controller gives excellent performance for initial and tracking response and shows a robust performance for rapid load change and disturbance, in which the permissible error surpasses the range border. The effect of the proposed control algorithm was verified in a test that controlled the speed of a motor equipped with a high speed computing capable DSP on which the proposed algorithm was loaded.
본 논문에서는 영역기반의 MAD(Mean Absolute Difference) 알고리즘과 변형된 PID(Proportional Integral Derivative) 기반의 팬/틸트 제어기를 이용하여 적응적인 스테레오 물체추적을 수행함으로써 물체추적 시스템의 오류검출 및 안정도를 분석하였다. 즉 순차적인 스테레오 입력영상에 영역기반의 MAD 알고리즘과 스테레오 카메라의 기하학적 정보를 이용하여 좌, 우측 표적물체의 위치정보를 추출해 낸 다음, 이 값으로 변형된 PID 제어기에 사용하여 잡음들이 존재하는 환경에서도 스테레오 카메라의 팬/틸트를 효과적으로 제어할 수 있었다. 따라서 본 논문에서 제시된 알고리즘을 이용할 경우 3D 로봇비전과 같은 정밀시스템에서 이동하는 추적물체에 대한 적응적인 제어와 실질적인 로봇 시각 시스템의 구현 가능성을 확인하였다.
지능형 교통 시스템(Intelligent Transportation Systems)의 첨단 교통 관리 시스템(Advanced Traffic Management System)은 고화질 카메라, 고성능 레이더 센서와 같은 향상된 인프라를 통하여 도로 상의 차량 속도, 통행량, 돌발 상황 등의 교통 상황을 실시간으로 분석하며 관련 업무를 자동화하고 있다. 특히 도로 이용자의 안전을 위해서는 돌발 상황 자동 검지 및 2차 사고 방지를 위한 시스템이 필요하다. 이러한 유고 검지 및 관리 시스템에서는 CCTV 기반 영상 검지와 레이더를 이용한 물체검지가 주로 사용된다. 본 논문은 다중 감시용 카메라를 사용한 실시간 고속도로 돌발 상황 검지 시스템에서 모자이크(mosaic) 동영상을 구성하는 방법과 다양한 각도에서 촬영된 움직이는 객체를 보다 정확하게 추적할 수 있는 배경 모델링에 기반한 알고리즘을 제안하였다. 실험결과 영상검지는 레이더검지의 근거리 음영 영역과 원거리 검지한계 영역을 보완해 줄 수 있을 뿐만 아니라 악천후를 제외한 주간 검지에서 보다 나은 분류 특징들을 갖고 있음을 확인 할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.