• Title/Summary/Keyword: real scale

Search Result 2,304, Processing Time 0.031 seconds

Tensile Force Estimation of Externally Prestressed Tendon Using SI technique Based on Differential Evolutionary Algorithm (차분 진화 알고리즘 기반의 SI기법을 이용한 외부 긴장된 텐던의 장력추정)

  • Noh, Myung-Hyun;Jang, Han-Taek;Lee, Sang-Youl;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.9-18
    • /
    • 2009
  • This paper introduces the application of DE (Differential Evolutionary) method for the estimation of tensile force of the externally prestressed tendon. The proposed technique, a SI (System Identification) method using the DE algorithm, can make global solution search possible as opposed to classical gradient-based optimization techniques. The numerical tests show that the proposed technique employing DE algorithm is a useful method which can detect the effective nominal diameters as well as estimate the exact tensile forces of the externally prestressed tendon with an estimation error less than 1% although there is no a priori information about the identification variables. In addition, the validity of the proposed technique is experimentally proved using a scale-down model test considering the serviceability state condition without and with the loss of the prestressed force. The test results prove that the technique is a feasible and effective method that can not only estimate the exact tensile forces and detect the effective nominal diameters but also inspect the damping properties of test model irrespective of the loss of the prestressed force. The 2% error of the estimated effective nominal diameter is due to the difference between the real tendon diameter with a wired section and the FE model diameter with a full-section. Finally, The accuracy and superiority of the proposed technique using the DE algorithm are verified through the comparative study with the existing theories.

Effect of Attention Feedback Awareness and Control Training on Attention Bias and Generalized Anxiety Symptoms in college students (주의 피드백 인식 및 조절 훈련이 대학생의 주의편향 및 범불안에 미치는 효과)

  • Kim, Su Jung;Shim, Eun-Jung
    • Korean Journal of School Psychology
    • /
    • v.16 no.2
    • /
    • pp.207-230
    • /
    • 2019
  • This study examined the effect of Attention Feedback Awareness and Control Training(A-FACT) on attention bias and generalized anxiety symptoms in college students. A total of 31 college students with at least 10 points on the Generalized Anxiety Disorder 7-item (GAD-7) scale or at least 56 points on the Korean version of the Penn State Worry Questionnaire (K-PSWQ) with attention bias were randomly assigned to one of three groups: A-FACT( n = 11), Attention Bias Modification (ABM)(n = 10) and Active Placebo Control (APC)(n = 10). Participants in A-FACT group received real-time feedback on attention bias based on their Baseline Neutral Response time(BNR) during A-FACT using a dot probe task. Participants in the ABM group received standard ABM, and those in the APC performed a dot probe task that they were informed was a program to reduce attention bias, but feedback was not provided. A total of eight sessions was conducted twice a week over a 4-week period. After every two sessions, GAD-7, K-PSWQ and K-STAI were rated. The effect of attention bias modification training was rated by changes in the Attention Bias Score(ABS), and in GAD-7, K-PSWQ and K-STAI scores. The results of repeated measure ANOVA indicated that the A-FACT group showed a significant decrease in ABS as well as in GAD-7, K-PSWQ and K-STAI scores compared to the other groups. Current results suggest that self-regulatory control of attention, that is, recognition of bias through feedback in A-FACT, may be effective in alleviating attention bias and generalized anxiety symptoms by recognizing bias through feedback on bias in attention bias modification training.

Fabrication Technique and Structural Performance Verification of PSC U-Type Segment Girder Using On-Site Pretension Method (현장 프리텐션 긴장 방식 적용 PSC U형 분절 거더 제작 기술 및 구조 성능 검증)

  • Sangki Park;Jaehwan Kim;Dong-Woo Seo;Ki-Tae Park;Hyun-Ock Jang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.3
    • /
    • pp.17-26
    • /
    • 2023
  • Prestressed Concrete (PSC) girders are divided into pre- and post-tension types as prestressing method, and I- and U-type as cross-sectional shape. There are both advantages and disadvantages depending on each prestressing method and cross-sectional shape, and each method is applied to bridge construction sites. In this study, a new girder design was attempted to develop that overcomes its shortcomings by using the pretension method and U-type cross sectional shape. Its structural performance was verified in this study. Pretension type girders are mainly manufactured in factories because they require a reaction arm and related facilities, and have the disadvantage of being limited in weight and span length for road transportation. In addition, in the case of the U-type cross-section, structural stability is very reliable during construction against overturning, but its own weight is relatively large comparing to I-type, and the post-tension method is mainly applied after on-site production. In this study, a PSC girder manufacturing method using the field pretension was proposed and a span length of 40 m real-scale test specimen was manufactured and verified its structural performance.

Preferred masking levels of water sounds according to various noise background levels in small scale open plan offices (소규모 개방형 사무실 배경 소음 레벨에 따른 최적 물소리 마스킹 레벨)

  • Tae-Hui Kim;Sang-Hyeon Lee;Chae-Hyun Yoon;Hyo-Won Sim;Joo-Young Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.617-626
    • /
    • 2023
  • This study aims to investigate the preferred sound level of water sound for various levels of open-plan-office noise regarding soundscape quality and speech privacy. And assessment of the work efficiency of the water sound. For the laboratory experiment, office noise was recorded using a binaural microphone in a real open-plan office. For the assessment of the soundscape quality and speech privacy, Overall Soundscape Quality (OSQ) and Listening Difficulty (LD) were evaluated under three different sound levels (55 dBA, 60 dBA, and 65 dBA) and five different signal-to-noise ratios (SNR -10 dB, -5 dB, 0 dB, +5 dB, and +10 dB). After the evaluation, the preferred SNR was proposed according to OSQ and LD. For the assessment of to work efficiency of water sound, this study evaluated the cognitive performance of both of the condition noise only and combine the water sound with office noise. The results showed that LD increased as the water sound level increased, but OSQ decreased. When the water sound level was more than the office noise level, the OSQ decreased from noise only. Therefore, considering OSQ and LD, the preferred SNR of water sound was -5 dB for all noise levels. At the preferred level of water sound, the cognitive performance results were shown to decrease at 55 dBA compared to noise only, but at 60 dBA and 65 dBA combine the water sound results were increased than the noise only.

National Disaster Management, Investigation, and Analysis Using RS/GIS Data Fusion (RS/GIS 자료융합을 통한 국가 재난관리 및 조사·분석)

  • Seongsam Kim;Jaewook Suk;Dalgeun Lee;Junwoo Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.743-754
    • /
    • 2023
  • The global occurrence of myriad natural disasters and incidents, catalyzed by climate change and extreme meteorological conditions, has engendered substantial human and material losses. International organizations such as the International Charter have established an enduring collaborative framework for real-time coordination to provide high-resolution satellite imagery and geospatial information. These resources are instrumental in the management of large-scale disaster scenarios and the expeditious execution of recovery operations. At the national level, the operational deployment of advanced National Earth Observation Satellites, controlled by National Geographic Information Institute, has not only catalyzed the advancement of geospatial data but has also contributed to the provisioning of damage analysis data for significant domestic and international disaster events. This special edition of the National Disaster Management Research Institute delineates the contemporary landscape of major disaster incidents in the year 2023 and elucidates the strategic blueprint of the government's national disaster safety system reform. Additionally, it encapsulates the most recent research accomplishments in the domains of artificial satellite systems, information and communication technology, and spatial information utilization, which are paramount in the institution's disaster situation management and analysis efforts. Furthermore, the publication encompasses the most recent research findings relevant to data collection, processing, and analysis pertaining to disaster cause and damage extent. These findings are especially pertinent to the institute's on-site investigation initiatives and are informed by cutting-edge technologies, including drone-based mapping and LiDAR observation, as evidenced by a case study involving the 2023 landslide damage resulting from concentrated heavy rainfall.

Research on manufacturing secondary construction products using in-situ carbonation technology (In-situ 탄산화 기술이 적용된 콘크리트 2차제품 제조 연구)

  • Hye-Jin Yu;Sung-Kwan Seo;Woo-Sung Yum
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.226-233
    • /
    • 2023
  • In this study, the basic physical properties and microstructure of concrete interlocking blocks with amount of different CO2 gas injection were analyzed according to determine the applicability of In-situ carbonation technology to construction secondary products. The amount of carbon dioxide gas injection was selected as 0, 0.1, 0.3, 0.5, 0.7 wt.% compared to cement amount. A lab-scale press equipment was designed to apply developed carbonation technology to real construction site. And mixer for stable CO2 gas injection was designed. Using the designed devices, CO2 gas injected samples were created and physical property of samples were performed. As a result of the physical property test, as the CO2 injection amount increased to 0.3 %, it showed higher strength behavior compared to the original mix. And more than 0.5 % samples showed lower strength behavior than original sample, but they satisfied the standard of concrete interlocking block. This results were determined that CO2 injection contributed to the creation of hydrates such as C-S-H. Therefore, the possibility of applying carbonation technology, which injects CO2 during mixing, to various secondary construction products was confirmed.

Development of Web-based Construction-Site-Safety-Management Platform Using Artificial Intelligence (인공지능을 이용한 웹기반 건축현장 안전관리 플랫폼 개발)

  • Siuk Kim;Eunseok Kim;Cheekyeong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.77-84
    • /
    • 2024
  • In the fourth industrial-revolution era, the construction industry is transitioning from traditional methods to digital processes. This shift has been challenging owing to the industry's employment of diverse processes and extensive human resources, leading to a gradual adoption of digital technologies through trial and error. One critical area of focus is the safety management at construction sites, which is undergoing significant research and efforts towards digitization and automation. Despite these initiatives, recent statistics indicate a persistent occurrence of accidents and fatalities in construction sites. To address this issue, this study utilizes large-scale language-model artificial intelligence to analyze big data from a construction safety-management information network. The findings are integrated into on-site models, which incorporate real-time updates from detailed design models and are enriched with location information and spatial characteristics, for enhanced safety management. This research aims to develop a big-data-driven safety-management platform to bolster facility and worker safety by digitizing construction-site safety data. This platform can help prevent construction accidents and provide effective education for safety practices.

A Study on an Automatic Classification Model for Facet-Based Multidimensional Analysis of Civil Complaints (패싯 기반 민원 다차원 분석을 위한 자동 분류 모델)

  • Na Rang Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.135-144
    • /
    • 2024
  • In this study, we propose an automatic classification model for quantitative multidimensional analysis based on facet theory to understand public opinions and demands on major issues through big data analysis. Civil complaints, as a form of public feedback, are generated by various individuals on multiple topics repeatedly and continuously in real-time, which can be challenging for officials to read and analyze efficiently. Specifically, our research introduces a new classification framework that utilizes facet theory and political analysis models to analyze the characteristics of citizen complaints and apply them to the policy-making process. Furthermore, to reduce administrative tasks related to complaint analysis and processing and to facilitate citizen policy participation, we employ deep learning to automatically extract and classify attributes based on the facet analysis framework. The results of this study are expected to provide important insights into understanding and analyzing the characteristics of big data related to citizen complaints, which can pave the way for future research in various fields beyond the public sector, such as education, industry, and healthcare, for quantifying unstructured data and utilizing multidimensional analysis. In practical terms, improving the processing system for large-scale electronic complaints and automation through deep learning can enhance the efficiency and responsiveness of complaint handling, and this approach can also be applied to text data processing in other fields.

A Study on Fish Movement Efficiency in Biopolymer and Aggregate Mixed Fishway (피마자유기반 바이오폴리머와 골재를 혼합한 어도의 어류이동효율 실험연구)

  • Dong-Jin Lee;Min Ho, Jang;Joongu Kang;Hong-Kyu Ahn
    • Ecology and Resilient Infrastructure
    • /
    • v.11 no.1
    • /
    • pp.11-22
    • /
    • 2024
  • A fishway is an artificial waterway or device used to resolve difficulties in the movement of fish in a river. Most existing fishways are made of concrete and emit toxic substances, which has a negative impact on the river environment. Accordingly, there is a need to develop fishway construction technology that is eco-friendly and can increase movement efficiency. The technology presented in this study is an integrated porous structure that combines the aggregate with a biopolymer material extracted from castor oil, a non-toxic material. It is a fishway construction technology using eco-friendly materials that can allow vegetation to grow on the surface. In this study, an eco-friendly fishway mixed with biopolymer and aggregate was built on a real scale and the fish movement efficiency was tested and analyzed. As a result of the experiment, a total of 201 fish of 14 species were released with tags inserted, and the detection rate of released fish was confirmed to be 82.6% on average. A total of 40 fish of 6 species were transported upstream through the fishway, and the average passage rate was confirmed to be 21.7%. As a result of checking the circadian migration pattern, it was found that all fish mainly migrate during the day. It was confirmed that there was no significant functional difference between a fishway using biopolymer and a concrete fishway. It is believed that a fishway using biopolymer can be used as a replacement for a concrete fishway.

A Study on the Effect of China House Prices on Bank Loan and Management Stability (중국 부동산 가격이 은행대출 및 경영안정성에 미치는 영향)

  • Bae Soo Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.153-158
    • /
    • 2024
  • Recently, concerns about the spread of credit risk in China's real estate market are gradually increasing. Therefore, it is very meaningful to diagnose the management stability of Chinese commercial banks. This study analyzes the impact of housing prices on the loan proportion and management stability of Chinese commercial banks. In addition, we classify Chinese commercial banks according to size and verify whether there are differences in loan proportion and management stability. If there is a difference by scale, the effect of interaction with housing price changes is also verified. The analysis results are summarized as follows. First, it was found that as the housing price growth rate increases, the proportion of loans from Chinese commercial banks increases. Second, as the rate of increase in housing prices and the proportion of total loans increases, management stability appears to decrease. Third, larger banks were found to have a higher proportion of loans, and smaller banks were found to have greater management stability. The results of this analysis show that Chinese commercial banks' aggressive expansion of their loan proportion is lowering their management stability. Therefore, it is necessary to adjust the loan ratio to the appropriate size level and secure stability with differentiated strategies according to the loan ratio