• Title/Summary/Keyword: real road distance

Search Result 117, Processing Time 0.026 seconds

A Reinvestigation on Key Issues Associated with the Yimjin(1712) Boundary Making and Demarcation: The Distribution of Soil Piles and the Location of 'Suchul(水出)' written on the Mukedeng's Map (임진정계 경계표지 토퇴의 분포와 목극등 지도에 표시된 '수출(水出)'의 위치)

  • Lee, Kang-Won
    • Journal of the Korean Geographical Society
    • /
    • v.52 no.1
    • /
    • pp.73-103
    • /
    • 2017
  • This paper reports the distribution of soil piles set up during the Yimjin(1712) Boundary Making and Demarcation(YBMD). Through the survey on the distribution of soil piles the location of 'Suchul'(水出: seepage zone) could be identified. The endpoint soil pile set up on the east-south bank of Heishigou(黑石溝) stream locates on $42^{\circ}04^{\prime}20.09^{{\prime}{\prime}}N$, $128^{\circ}16^{\prime}08.42^{{\prime}{\prime}}E$. The west beginning point of soil piles distributed in the south side of Tuhexian road locates on $42^{\circ}02^{\prime}20.14^{{\prime}{\prime}}N$, $128^{\circ}18^{\prime}53.40^{{\prime}{\prime}}E$. And the east endpoint of them locates $42^{\circ}01^{\prime}32.97^{{\prime}{\prime}}N$, $128^{\circ}21^{\prime}24.59^{{\prime}{\prime}}E$. From the west beginning point to the soil pile located in 2.1km distance from the beginning point, the distribution direction is west-east. The direction of soil piles after them is northwest-southeast. The total real length of soil piles distributed in the south side of Tuhexian(圖和線) road is about 4.2km more or less. The location of 'Suchul' written on the Mukedeng's map locates on $42^{\circ}01^{\prime}30.36^{{\prime}{\prime}}N$, $128^{\circ}21^{\prime}3.62^{{\prime}{\prime}}E$, The point locates in southeastward 222m distance from the soil piles endpoint of the south side of Tuhexian road. In reference of these reports this paper develops some reinterpretation on the YBMD.

  • PDF

Development of Monitoring System for Real Time Maintenance of Road Beacon Light (도로 표시등 실시간 유지관리를 위한 모니터링시스템 개발)

  • Lee, Jong Ho;Kim, Kyou Jeon;Choi, Ju Weon;Ahn, Won Tea;Lee, Seung Ki;Choi, Seok Keun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.3
    • /
    • pp.69-75
    • /
    • 2015
  • Road facilities for safe driving were designed for drivers to distinguish them during day and night, but they cannot play their role when the weather becomes worse. Recently, the road facilities have been designed by using electric and electronic technology so that they can be displayed well at a long distance, but they should be replaced very often due to their frequent breakdown. So, there are many problems in traffic calming and maintenance. In this study, to solve the above problems, semi-permanent LED beacon light was installed in the area where traffic accident are frequent, and monitoring system was developed so that the LED beacon light can be maintenanced by connecting with system. For the above installation and development, system was based on window operating system and it was developed for worker to operate it by using P.C. through connecting with wireless local area network. The result of this study led to analyzing state information on the battery of field-installed LED beacon light in real time, and manegement to effectively by predicting their life cycle.

Analysis Study of Mobile LiDAR Performance Degradation in Rainfall Based on Real-World Point Cloud Data (강우 시 모바일 LiDAR 성능저하에 대한 실측 점군데이터 기반 해석 연구)

  • Youngmin Kim;Bumjin Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.5
    • /
    • pp.186-198
    • /
    • 2024
  • LiDAR is a key sensor used in autonomous vehicles, and its range of applications is expanding because it can generate 3D information and is relatively robust to various environmental factors. However, it is known that LiDAR performance is degraded to some extent due to signal attenuation and scattering by raindrops during rain, and thus the need for analysis of factors affecting rainfall in road environment detection and utilization using LiDAR has been confirmed. In this study, we analyze how signal attenuation and scattering, known as factors degrading LiDAR performance during rain, cause performance degradation based on real data. We acquire data using facilities that utilize high-luminosity retroreflective sheeting in indoor chamber where quantity of rainfall can be controlled, and quantitatively confirm the degradation of LiDAR performance during rain by interpreting it from the perspective of signal attenuation and scattering. According to the point cloud distribution and performance analysis results, LiDAR performance deteriorates due to signal attenuation and scattering caused by rain. Specifically, the quantitative performance analysis shows that LiDAR experiences a decrease in intensity primarily due to signal attenuation from rain, as well as a reduction in NPC and intensity due to signal scattering effects, along with an increase in measurement distance error.

Development and Evaluation of Real-time Travel Time Forecasting Model: Nonparametric Regression Analysis for the Seoul Transit System (비모수 회귀분석을 이용한 실시간 통행시간 예측 기법 개발 및 평가 (서울시 버스를 중심으로))

  • Park, Sin-Hyeong;Jeong, Yeon-Jeong;Kim, Chang-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.1 s.87
    • /
    • pp.109-120
    • /
    • 2006
  • Since the 1st of July, 2004, the public transport system of the Seoul metropolitan area has been rearranged. In the new system, bus lines are divided into 4 classes-wide area, arterial road, branch, and rotation lines with renewed fare system based on the total distance travelled. Since central control center known as the Bus Management System (BMS) integrates the entire system operation. it now becomes feasible to collect travel information and provide it to the users scientifically and systematically. The Purpose of this study is to forecast transit travel time using real-time traffic data coming from both buses and subway. This is significant contribution since provision of real-time transit information and easy access to it would most likely boost the use of mass transit system, alleviating roadway congestion in the metropolitan area.

Development of Forest Road Network Model Using Digital Terrain Model (수치지형(數値地形)모델을 이용(利用)한 임도망(林道網) 배치(配置)모델의 개발(開發))

  • Lee, Jun Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.4
    • /
    • pp.363-371
    • /
    • 1992
  • This study was aimed at developing a computer model to determine rational road networks in mountainous forests. The computer model is composed of two major subroutines for digital terrain analyses and route selection. The digital terrain model(DTM) provides various information on topographic and vegetative characteristics of forest stands. The DTM also evaluates the effectiveness of road construction based on slope gradients. Using the results of digital terrain analyses, the route selection subroutine, heuristically, determines the optimal road layout satisfying the predefined road densities. The route selection subroutine uses the area-partitioning method in order to fully of roads. This method leads to unbiased road layouts in forest areas. The size of the unit partitiones area can be calculated as a function of the predefined road density. In addition, the user-defined road density of the area-partitioning method provides flexibility in applying the model to real situations. The rational road network can be easily achived for varying road densities, which would be an essential element for network design of forest roads. The optimality conditions are evaluated in conjuction with longitudinal gradients, investment efficiency earthwork quantity or the mixed criteria of these three. The performance of the model was measured and, then, compared with those of conventional ones in terns of average skidding distance, accessibility of stands, development index and circulated road network index. The results of the performance analysis indicate that selection of roading routes for network design using the digital terrain analysis and the area-partitioning method improves performance of the network design medel.

  • PDF

Development of Accident Modification Factors for Road Design Safety Evaluation Algorithm of Rural Intersections (지방부 교차로의 도로설계 안전성 판단 알고리즘 구축을 위한 AMF 개발 (신호교차로를 중심으로))

  • Kim, Eung-Cheol;Lee, Dong-Min;Choe, Eun-Jin;Kim, Do-Hun
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.91-102
    • /
    • 2009
  • A traffic accident prediction model developed using various design variables(road design variables, geometric variables, and traffic environmental variables) is one of the most important factors to safety design evaluation system for roads. However, statistical accident models have a crucial problem not applicable for all intersections. To make up this problem, this study developed AMFs(Accident Modification Factors) through statistical modeling methods, historical accident databases, judgment from traffic experts, and literature review by considering design variable's characteristics, traffic accident rates, and traffic accident frequency. AMFs developed in this study include exclusive left-turn lane, exclusive right-turn lane, sight distance, and intersection angle. Predictabilities of the developed AMFs and the existing accident prediction models are compared with real accident historical data. The results showed that performances of the developed AMFs are superior to the existing statistical accident prediction models. These findings show that AMFs should be considered as a important process to develop safety design evaluation algorithms. Additionally, AMFs could be used as an index that can judge the impact of corresponding design variables on accidents in rural intersections.

Evaluations for Representativeness of Light-Duty Diesel Vehicles' Fuel-based Emission Factors on Vehicle Operating Conditions (연료 소비량에 기반한 소형 경유차 대기오염물질 배출계수의 운전조건별 대표성 평가)

  • Lee, Taewoo;Kwon, Sangil;Son, Jihwan;Kim, Jiyoung;Jeon, Sangzin;Kim, Jeongsoo;Choi, Kwangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.745-756
    • /
    • 2013
  • The purpose of this study is to evaluate representativeness of fuel-based emission factors. Twelve light-duty diesel vehicles which meet Euro-3 to 5 legislative emission limits were selected for emission tests. Second-by-second modal emission rates of vehicles were measured on a standard laboratory chassis dynamometer system. An off-cycle driving cycle was developed as a representative Korean real-world on-road driving cycle. Fuel-based emission factors were developed for short trip segments that involved in the selected driving cycle. Each segment was defined to have unit travel distance, which is 1 km, and characterized by its average speed and Relative Positive Acceleration (RPA). Fuel-based $NO_x$ emission factors demonstrate relatively good representativeness in terms of vehicle operation conditions. $NO_x$ emission factors are estimated to be within ${\pm}20%$ of area-wide emission factor under more than 40% of total driving situations. This result implies that the fuel-based $NO_x$ emission factor could be practically implemented into the on-road emission management strategies, such as a remote sensing device (RSD). High emitting vehicles as well as high emitting operating conditions heavily affect on the mean values and distributions of CO and THC emission factors. Few high emitting conditions are pulling up the mean value and biasing the distributions, which weaken representativeness of fuel-based CO and THC emission factors.

Comparison of simulation and Actual Test for ACC Function on Real-Road (실도로에서의 ACC 기능에 대한 시뮬레이션과 실차시험 비교 평가)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.457-467
    • /
    • 2020
  • Increasing environmental concerns have prompted countries around the world to tighten regulations on greenhouse gases and fuel efficiency. Research is being done using advanced driver assistance systems to improve fuel economy and for the convenience of drivers. Research on systems such as adaptive cruise control (ACC), LKAS, and AEB is active. The purpose of ACC is to control the longitudinal speed and distance of the vehicle and minimize the driver's load, which is considered useful for accident prevention. From this point of view, research has used a mathematical method of safety evaluation as a function of distances and scenarios while considering domestic road environments. A vehicle is tested with a simulation in a proposed scenario. The purpose of the analysis is to verify the functional safety of ACC by comparing the theoretical calculations using theoretical equations, the relative distances in the simulation, and an actual vehicle test. These methods are expected to enable many companies to use scenarios, formulas, and simulations as safety verification methods in the development of ACC.

Design of Continuous Driving Enforcement System for FSORT-based Highway Passing Lane (F-SORT 기반 고속도로 추월차로 지속 주행 무인 단속 시스템 설계)

  • Nam-Youl Baik;Gi-Tae Kim;Jongwook Jang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.5
    • /
    • pp.189-193
    • /
    • 2024
  • According to the Korean Road Traffic Act, continuous driving in the overtaking lane (1 lane) of the highway is judged as a violation of the designated lane. Currently, in order to crack down on the advanced situation on the highway, a citizen's report or the road police directly determine whether it is a violation and crack down. This is because a violation is judged by overtaking or not the speed of the vehicle on the highway, and it is difficult to judge whether the vehicle is continuously driving because the standard is ambiguous in CCTV. Therefore, a system that self-determines and regulates whether the first lane is continuously driving without human intervention is needed. In this paper, in order to enable multiple object tracking during object tracking and to ensure the system's real-time feasibility, an unmanned crackdown system was designed based on F-SORT (Focused-Simple Online and Realtime Tracking) based on the Simple Online and Realtime Tracking (SORT) model, and the system determines whether or not the vehicle is continuously driving in one lane by determining the moving distance of the vehicle

A Study to Provide Real-Time Freeway Precipitation Information Using C-ITS Based PVD (C-ITS 기반 PVD를 활용한 실시간 고속도로 강수정보 수집에 관한 연구)

  • Kim, Ho seon;Kim, Seoung bum
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.133-146
    • /
    • 2021
  • Providing weather information on roads today means that the road weather conditions near weather observation points are presented to road managers and road users. These weather observation points are managed by the Korea Meteorological Administration. However, it is difficult to provide accurate weather information due to physical limitations such as the presence of precipitation collection points, distance to weather information provision roads, and the presence of mountains. Therefore, this study intends to perform a comparative analysis by time zone and administrative dong provided by the Meteorological Administration using the wiper information among the information contained in the PVD(Probe Vehicle Data) collected from the highway C-ITS project. As a result of the analysis it was possible to detect rainfall even in the event of local rainfall and rainfall over a long period of time and the higher the cumulative precipitation per hour, the higher the probability of coincidence. This study is meaningful because it used PVD to solve the limitations of the existing road weather information provision method and suggested utilization plan for PVD.