• Title/Summary/Keyword: real power flow control

Search Result 100, Processing Time 0.019 seconds

Hybrid Fuzzy PI-Control Scheme for Quasi Multi-Pulse Interline Power Flow Controllers Including the P-Q Decoupling Feature

  • Vural, Ahmet Mete;Bayindir, Kamil Cagatay
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.787-799
    • /
    • 2012
  • Real and reactive power flows on a transmission line interact inherently. This situation degrades power flow controller performance when independent real and reactive power flow regulation is required. In this study, a quasi multi-pulse interline power flow controller (IPFC), consisting of eight six-pulse voltage source converters (VSC) switched at the fundamental frequency is proposed to control real and reactive power flows dynamically on a transmission line in response to a sequence of set-point changes formed by unit-step reference values. It is shown that the proposed hybrid fuzzy-PI commanded IPFC shows better decoupling performance than the parameter optimized PI controllers with analytically calculated feed-forward gains for decoupling. Comparative simulation studies are carried out on a 4-machine 4-bus test power system through a number of case studies. While only the fuzzy inference of the proposed control scheme has been modeled in MATLAB, the power system, converter power circuit, control and calculation blocks have been simulated in PSCAD/EMTDC by interfacing these two packages on-line.

An Algorithm for BITC Evaluation considering the Power Control Characteristics of FACTS Devices (FACTS기기의 유효전력 제어특성을 고려한 모선간 송전용량 평가 알고리즘)

  • Yoon, Yong-Beum;Choo, Jin-Boo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.113-118
    • /
    • 1999
  • In this, sensitivity based approach to estimate BITC(bilateral interchange transfer capacity) considering the real power flow control function of FACTS devices is presented. The real power flow setting of the FACTS devices is adjusted so that it transfers the power flow from the first violation point of transmission capacity to other transmission lines in the power system, thus allowing more power to be transferred from the specified generator bus to the specified load bus. The transfer between the two bus locations is increased from this new operating condition until a violation of transmission capacity limits occurs or until the setting of the FACTS devices can no longer be adjusted. The proposed algorithm is illustrated using examples of small and real life power system.

  • PDF

UPFC Performance Control in Distribution Networks for DG Sources in the Islanding

  • Fandawi, Ahmed;Nazarpour, Daryoosh
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.303-309
    • /
    • 2017
  • The flexible AC transmission system (FACTS) provides a new advanced technology solution to improve the flexibility, controllability, and stability of a power system. The unified power flow controller (UPFC) is outstanding for regulating power flow in the FACTS; it can control the real power, reactive power, and node voltage of distribution networks. This paper investigates the performance of the UPFC for power flow control with a series of step changes in rapid succession in a power system steady state and the response of the UPFC to distribution network faults and islanding mode. Simulation was carried out using the MATLAB's simulink sim power systems toolbox. The results, which were carried out on a 5-bus test system and a 4-bus multi-machine electric power system, show clearly the effectiveness and viability of UPFC in rapid response and independent control of the real and reactive power flows and oscillation damping [6].

Transient stability improvement using quasi-multi pulse BTB-STATCOM

  • Vural, Ahmel M.;Bayindi, Kamil C.
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.47-59
    • /
    • 2014
  • Back-to-back STATCOM configuration is an extension of STATCOM in which the reactive power at two-sides and the real power flow through the DC link can be controlled concurrently and independently. This flexible operation brings many advantages to the micro-grids, distributed generation based systems, and deregulated power systems. In this paper, the dynamic control characteristics of the back-to-back STATCOM is investigated by simulating the detailed converter-level model of the converters in PSCAD. Various case studies in a single-machine test system are studied to present that the real power control feature of the BtB-STATCOM, even with a simple controller design, can enhance the transient stability of the machine under different fault scenarios.

Target Operation Voltage Guidelines Considering Voltage Level in Each Voltage Control area by Applying Optimization Technique Through EMS Data Observation (EMS data 분석 및 최적화 기법을 적용한 제어지역별 목표운전전압 제안)

  • Sung, Ung;Kim, Jae-Won;Kim, Tae-Gyun;Lee, Byong-Jun;Jung, Eung-Soo;Cho, Jong-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.671-678
    • /
    • 2009
  • This paper presents target operation voltage guidelines of each voltage control area considering both voltage stability and economical efficiency in real power system. EMS(Energy Management System) data, Real-time simulator, shows not only voltage level but lots of information about real power system. Also this paper performs optimal power flow calculation of three objective functions to propose the best target operation voltage. objective function of interchange power flow maximum and active power loss minimization stand for economical efficiency index and reactive power reserve maximum objective unction represents stability index. Then through simulation result using optimazation technique, the most effective objective function is chosen. To sum up, this paper divides voltage control area into twelve considering electric distance characteristics and estimate or voltage level by the passage of time of EMS peak data. And through optimization technique target operation voltage of each voltage control area is estimated and compare heir result. Then it is proposed that the best scenario to keep up voltage stability and maximize economical efficiency in real power system.

Development of Real-Time Load Flow Program for Korean Energy Management System (한국형 EMS 시스템용 실시간 조류계산 프로그램 개발)

  • Yun, Sang-Yun;Cho, Yoon-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.242-247
    • /
    • 2010
  • This paper introduces a real-time load flow program for Korean energy management system(EMS). This study is concentrated on the following aspects. First, we propose the model of the real-time database and power system equipment for the real-time load flow. These models are extracted from the needs of load flow functions and are designed to the application common information. Second, several techniques are applied for the efficient convergence and computational speed. The generation/load mismatch is redistributed using generator participation factors which are separated to the reference bus. For the voltage control, the jacobian matrix is composed with the basic Y matrix elements and the voltage control elements. Through the optimally ordering, jacobian row and column for a column is changed. However all jacobian matrix entries have same order with the Y matrix. The proposed program is tested using the Korea Electric Power Corporation(KEPCO) system. Through the test, we verified that the proposed program can be effectively used to accomplish the Korean EMS system.

Power Flow Control of Thyristor Controlled Shunt Compensator (싸이리스터 제어 병렬 보상기에 의한 전력 제어 연구)

  • 정교범
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.680-683
    • /
    • 1999
  • A thyristor controlled shunt compensator, which is installed in the middle of the transmission line is adopted for controlling real power flow in a simple power transmission system. By means on the Fourier series representation of the thyristor switching action and the system parameters, the thyristor current equations are derived, which transmit the required real power of the simple power transmission system and inform the thyristor firing angle, the thyristor conduction angle, the power flows and the harmonic characteristics EMTP simulations at the various operating points show the dynamic characteristics of the thyristor controlled shunt compensator and correspond to the results calculated with the Fourier series representation.

  • PDF

Reduced Switch Count Topology of Current Flow Control Apparatus for MTDC Grids

  • Diab, Hatem Yassin;Marei, Mostafa Ibrahim;Tennakoon, Sarath B.
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1743-1751
    • /
    • 2016
  • The increasing demand for high voltage DC grids resulting from the continuous installation of offshore wind farms in the North Sea has led to the concept of multi-terminal direct current (MTDC) grids, which face some challenges. Power (current) flow control is a challenge that must be addressed to realize a reliable operation of MTDC grids. This paper presents a reduced switch count topology of a current flow controller (CFC) for power flow and current limiting applications in MTDC grids. A simple control system based on hysteresis band current control is proposed for the CFC. The theory of operation and control of the CFC are demonstrated. The key features of the proposed controller, including cable current balancing, cable current limiting, and current nulling, are illustrated. An MTDC grid is simulated using MATLAB/SIMULINK software to evaluate the steady state and dynamic performance of the proposed CFC topology. Furthermore, a low power prototype is built for a CFC to experimentally validate its performance using rapid control prototyping. Simulation and experimental studies indicate the fast dynamic response and precise results of the proposed topology. Furthermore, the proposed controller offers a real solution for power flow challenges in MTDC grids.

Power System Congestion Problems using Hybrid Control of PST and Real Power Generation (위상변환기와 발전출력 하이브리드 제어를 이용한 계통 혼잡처리 방안)

  • Kim, Kyu-Ho;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.223-225
    • /
    • 2005
  • This paper presents a scheme to solve the congestion problem using hybrid control with phase-shifting transformer(PST) and power generation in power systems. A good design of PST and power generation control can improve total transfer capability(TTC) in interconnected systems. This paper deals with an application of optimization technique for TTC calculation. The optimization method is used to maximize power flow of tic line subject to security constraints such as voltage magnitude and real power flow. The proposed method is applied to 10 machines 39 buses model systems to show its effectiveness.

  • PDF

An Algorithm for Transfer Capability Evaluation in Power Systems with FACTS Device (FACTS적용계통에서의 송전용량 평가 알고리즘)

  • Yoon, Yong-Beum;Yoon, Jong-Su;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.880-883
    • /
    • 1998
  • In this paper, sensitivity based approach to estimate BITC(bilateral interchange transfer capacity) considering the real power flow control function of FACTS device is presented. The real power flow setting of the FACTS device is adjusted so that it transfer the power flow from the first violation point of transmission capacity to other transmission lines in the power system, thus allowing more power to be transferred from the specified generator bus to the specified load bus. The transfer between the two bus locations is increased from this new operating condition until a violation of transmission capacity limits occurs or until the setting of the FACTS device can no longer be adjusted. The proposed algorithm is illustrated using examples of small and real life power system.

  • PDF