• 제목/요약/키워드: real condition study

검색결과 1,549건 처리시간 0.036초

A Study on Estimating the Next Failure Time of LNG FPSO Compressor (해양플랜트 LNG FPSO 압축기의 신뢰성 및 회귀분석 기반 고장시점 추정 방법)

  • Cho, Sang-Jae;Jun, Hong-Bae;Shin, Jong-Ho;Choi, Sang-Deok
    • Korean Journal of Computational Design and Engineering
    • /
    • 제19권3호
    • /
    • pp.203-213
    • /
    • 2014
  • The O&M (Operation and Maintenance) phase of offshore plants with a long life cycle requires heavy charges and more efforts than the construction phase, and the occurrence of an accident of an offshore plant causes catastrophic damage. So previous studies have focused on design for reliability, and recently many studies have dealt with a maintenance system to prevent unexpected failures. Nowadays due to the emerging ICTs (Information Communication Technologies) and sensor technologies, it is possible to send health monitoring information of important equipment to administrator of an offshore plant in real time, which leads to having much concern on condition based maintenance policy or predictive maintenance. In this study, we have reviewed previous studies associated with condition-based maintenance of offshore plants, and introduced the approaches predicting failures of the compressor which is one of essential mechanical devices in LNG FPSO.

The Impact of COVID-19, Day-of-the-Week Effect, and Information Flows on Bitcoin's Return and Volatility

  • LIU, Ying Sing;LEE, Liza
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권11호
    • /
    • pp.45-53
    • /
    • 2020
  • Past literatures have not studied the impact of real-world events or information on the return and volatility of virtual currencies, particularly on the COVID-19 event, day-of-the-week effect, daily high-low price spreads and information flow rate. The study uses the ARMA-GARCH model to capture Bitcoin's return and conditional volatility, and explores the impact of information flow rate on conditional volatility in the Bitcoin market based on the Mixture Distribution Hypothesis (Clark, 1973). There were 3,064 samples collected during the period from 1st of January 2012 to 20th April, 2020. Empirical results show that in the Bitcoin market, a daily high-low price spread has a significant inverse relationship for daily return, and information flow rate has a significant positive relationship for condition volatility. The study supports a significant negative relationship between information asymmetry and daily return, and there is a significant positive relationship between daily trading volume and condition volatility. When Bitcoin trades on Saturday & Sunday, there is a significant reverse relationship for conditional volatility and there exists a day-of-the-week volatility effect. Under the impact of COVID-19 event, Bitcoin's condition volatility has increased significantly, indicating the risk of price changes. Finally, the Bitcoin's return has no impact on COVID-19 events and holidays (Saturday & Sunday).

A Study on Estimating the Next Failure Time of a Compressor in LNG FPSO (LNG FPSO 압축기 고장시간 예측 방안에 관한 연구)

  • Cho, Sang-Je;Jun, Hong-Bae;Shin, Jong-Ho;Hwang, Ho-Jin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • 제37권4호
    • /
    • pp.12-23
    • /
    • 2014
  • The O&M (Operation and Maintenance) phase of offshore plants with a long life cycle requires heavy charges and more efforts than the construction phase, and the occurrence of an accident of an offshore plant causes catastrophic damage. So previous studies have focused on the development of advanced maintenance system to avoid unexpected failures. Nowadays due to the emerging ICTs (Information Communication Technologies) and sensor technologies, it is possible to gather the status data of equipment and send health monitoring data to administrator of an offshore plant in a real time way, which leads to having much concern on the condition based maintenance policy. In this study, we have reviewed previous studies associated with CBM (Condition-Based Maintenance) of offshore plants, and introduced an algorithm predicting the next failure time of the compressor which is one of essential mechanical devices in LNG FPSO (Liquefied Natural Gas Floating Production Storage and Offloading vessel). To develop the algorithm, continuous time Markov model is applied based on gathered vibration data.

An experimental study on the evaluation of abrasion resistance for concrete surface coating materials by cruising vehicle (차량 주행에 따른 콘크리트용 바닥 마감재의 마모저항성 평가방법)

  • Choi, Eun-Su;Kim, Young-Kun;Seo, Sang-Kyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.849-852
    • /
    • 2008
  • In the wheel tracking test to evaluate abrasion resistance for concrete surface coating materials applied parking lot, weight of the wheel, test temperature, scattered sand amount, wheel speed, etc. various test condition is used for reliable evaluating the abrasion resistance performance of surface coating materials and the results depends on the test condition. In this paper, we carried experimental study as following on abrasion resistance with 2kinds of different environmental conditions. - Commons : real car tire with 300kg of load, 5km/h of speed, 80,000 cycle. - Control A : no other deterioration condition - Control B : scattering 1.0g of sand per every 30rounds from 1m height.

  • PDF

VirtualDub as a Useful Program for Video Recording in Real-time TEM Analysis (실시간 TEM 분석에 유용한 영상 기록 프로그램, VirtualDub)

  • Kim, Jin-Gyu;Oh, Sang-Ho;Song, Kyung;Yoo, Seung-Jo;Kim, Young-Min
    • Applied Microscopy
    • /
    • 제40권1호
    • /
    • pp.47-51
    • /
    • 2010
  • The capability of real-time observation in TEM is quite useful to study dynamic phenomena of materials in a certain variable ambience. In performing the experiment, the choice of video recording program is an important factor to obtain high quality of movie streaming. Window Movie Maker (WMM) is generally recommended as a default video recording program if one uses "DV Capture" function in DigitalMicrograph$^{TM}$ (DM) software. However, the image quality does not often satisfy the condition for high-resolution microscopic analysis since the severe information loss in the final result occurs during the conversion process. As a good candidate to overcome this problem, Virtual-Dub is highly recommended since the information loss can be minimized through the streaming process. In this report, we demonstrated how useful VirtualDub works in a high-resolution movie recording. Quantitative comparison of the information quality between the images recorded by each software, WMM and VirtualDub, was carried out based on histogram analysis. As a result, the image recorded by VirtualDub was improved ~13% in brightness and ~122% in contrast compared with the image obtained by WMM at the same imaging condition. Remarkably, the gray gradation (meaning an amount of information) becomes wider up to ~115% than that of the WMM result.

A Study on the Optimal Train Recognition Ratio Instrumentation based on RFID (RFID기반 철도차량 최적 인식율 측정에 관한 연구)

  • Kang, Min-Soo;Jung, Eu-Bong;Lee, Key-Seo
    • Journal of the Korean Society for Railway
    • /
    • 제10권6호
    • /
    • pp.633-639
    • /
    • 2007
  • This study proposes an optimal condition to recognize a train using RFID. In order to recognize a moving train, bandwidth, an angle of antenna and the location of a tag should be considered. In this study, a field test was conducted using two different bandwidths (900MHz and 2.45GHz), four angles of antenna(0, 30, 45, and $60^{\circ}$), different velocities (10, 30 and 50km), and three different locations of tags. The field test verified the optimal condition for recognition of a train, The present study convinced that location detection and tracking of rail freight can be monitored in real time. The present technology can be applied to railway signals including detecting and tracking such as EURO Balis.

Analysis of Response Change of Structure due to Tunnel Excavation Conditions in Sand Ground (모래지반에서 터널 굴착조건들을 반영한 상부 블록구조물의 거동변화 분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제33권4호
    • /
    • pp.1541-1549
    • /
    • 2013
  • This study investigates the response of structures to tunnelling-induced ground movements in sand ground, varying tunnel excavation condition (tunnel depth and diameter), tunnel construction condition (ground loss), ground condition (loose sand and dense sand). Four-story block-bearing structures have been used because the structueres can easily be characterized of the extent of dmages with crack size and distribution. Numerical parametric studies have been used to investigae of the response of structures to varying tunnelling conditions. Numerical analysis has been conducted using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The results of structure responses from various parametric studies have been integrated to consider tunnel excavation condition, tunnel construction condition, and ground condition and provided as a relationship chart. Using the chart, the response of structures to tunnelling can easily be evaluated in practice in sand ground.

A Study on the Compensation of the Difference of Driving Behavior between the Driving Vehicle and Driving Simulator (가상주행과 실차주행의 운전자 주행행태 차이에 관한 연구)

  • Park, Jinho;Lim, Joonbeom;Joo, Sungkab;Lee, Soobeom
    • International Journal of Highway Engineering
    • /
    • 제17권2호
    • /
    • pp.107-122
    • /
    • 2015
  • PURPOSES : The use of virtual driving tests to determine actual road driving behavior is increasing. However, the results indicate a gap between real and virtual driving under same road conditions road based on ergonomic factors, such as anxiety and speed. In the future, the use of virtual driving tests is expected to increase. For this reason, the purpose of this study is to analyze the gap between real and virtual driving on same road conditions and to use a calibration formula to allow for higher reliability of virtual driving tests. METHODS : An intelligent driving recorder was used to capture real driving. A driving simulator was used to record virtual driving. Additionally, a virtual driving map was made with the UC-Win/Road software. We gathered data including geometric structure information, driving information, driver information, and road operation information for real driving and virtual driving on the same road conditions. In this study we investigated a range of gaps, driving speeds, and lateral positions, and introduced a calibration formula to the virtual record to achieve the same record as the real driving situation by applying the effects of the main causes of discrepancy between the two (driving speed and lateral position) using a linear regression model. RESULTS: In the virtual driving test, driving speed and lateral position were determined to be higher and bigger than in the real Driving test, respectively. Additionally, the virtual driving test reduces the concentration, anxiety, and reality when compared to the real driving test. The formula includes four variables to produce the calibration: tangent driving speed, curve driving speed, tangent lateral position, and curve lateral position. However, the tangent lateral position was excluded because it was not statistically significant. CONCLUSIONS: The results of analyzing the formula from MPB (mean prediction bias), MAD (mean absolute deviation) is after applying the formula to the virtual driving test, similar to the real driving test so that the formula works. Because this study was conducted on a national, two-way road, the road speed limit was 80 km/h, and the lane width was 3.0-3.5 m. It works in the same condition road restrictively.

A Study on a Two-Axis Solar Tracking System Based on Fuzzy Logic Control (퍼지 논리 제어를 기반으로 한 2축 태양광 추적시스템에 관한 연구)

  • Ahn, Byeongwon;Lee, Hui-Bae;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제21권5호
    • /
    • pp.531-537
    • /
    • 2015
  • In order to maximize power output from the solar panels, one needs to keep the panels aligned with the sun. So solar tracker having high reliability must be designed. This paper cares about the design and evaluation of a two-axis solar tracker system based on fuzzy logic control with LabVIEW. The research focus on planning mechanical parts, making an intelligent controller which controls and monitors all parameters via user interface implemented of a fuzzy decision support system for control of photovoltaic panel movement. We also develop a real solar tracker system and analyze the influence indexes such as environment, weather, season, and light condition. The solar tracker is tested in real condition and all parameters related to the system operation are recorded and analyzed. The developed solar tracking system got a much higher efficiency about 38 % compare to fixed solar panel although the weather condition is affected a lot to the solar panel. So we confirmed the our auto tracking system is more effective and can allow more energy to be produced.

A Study on the Predictive Maintenance of 5 Axis CNC Machine Tools for Cutting of Large Aircraft Parts (대형 항공부품용 5축 가공기에서의 예측정비에 관한 연구)

  • Park, Chulsoon;Bae, Sungmoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • 제43권4호
    • /
    • pp.161-167
    • /
    • 2020
  • In the process of cutting large aircraft parts, the tool may be abnormally worn or damaged due to various factors such as mechanical vibration, disturbances such as chips, and physical properties of the workpiece, which may result in deterioration of the surface quality of the workpiece. Because workpieces used for large aircrafts parts are expensive and require strict processing quality, a maintenance plan is required to minimize the deterioration of the workpiece quality that can be caused by unexpected abnormalities of the tool and take maintenance measures at an earlier stage that does not adversely affect the machining. In this paper, we propose a method to indirectly monitor the tool condition that can affect the machining quality of large aircraft parts through real-time monitoring of the current signal applied to the spindle motor during machining by comparing whether the monitored current shows an abnormal pattern during actual machining by using this as a reference pattern. First, 30 types of tools are used for machining large aircraft parts, and three tools with relatively frequent breakages among these tools were selected as monitoring targets by reflecting the opinions of processing experts in the field. Second, when creating the CNC machining program, the M code, which is a CNC auxiliary function, is inserted at the starting and ending positions of the tool to be monitored using the editing tool, so that monitoring start and end times can be notified. Third, the monitoring program was run with the M code signal notified from the CNC controller by using the DAQ (Data Acquisition) device, and the machine learning algorithms for detecting abnormality of the current signal received in real time could be used to determine whether there was an abnormality. Fourth, through the implementation of the prototype system, the feasibility of the method proposed in this paper was shown and verified through an actual example.