• Title/Summary/Keyword: ready-mix

Search Result 63, Processing Time 0.025 seconds

Analysis of Measured Mean Compressive Strength of Ready-Mixed Concrete by Season in Gangwon Area (강원지역 레미콘의 계절별 평균압축강도의 통계특성 분석)

  • Yun, Kyong-Ku;Park, In-Jung;Hong, Young-Ho
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.109-116
    • /
    • 2013
  • In this study the compressive strength data were collected from ready­mix concrete plants, and the analysis result showed that when using A­D test the concrete of 24MPa is suitable than that of 21MPa for normal distribution. The prediction formula for average compressive strength were proposed to $f_{cu}=f_{ck}+4(MPa)$. When comparing the proposed equations and existing relationship, the estimation variations of elastic modulus and creep modulus were not significant. The proposed equation confirmed that there was no effect to the influence function for modulus of elasticity and creep. Therefore, it was concluded that the proposed equation could replace the exiting interaction formula.

  • PDF

Computer Program for Quality Control of Ready Mixed Concrete (레디믹스트 콘크리트의 품질관리 프로그램 개발)

  • 최재진;박원태
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.20-26
    • /
    • 2002
  • To make practical application of mixing test results to concrete mix design, experimental tests of concrete were done and the relationship between cement-water ratio and compressive strength of concrete was obtained. A computer program which can be used for data base of air content, slump and compressive strength test results was developed. The program draws $\bar{X}$-R or X-Rs control charts and has data sheets for arrangement of material test results. The computer program also helps calculation of concrete mix proportions for mixing tests and contains dictionary of concrete technical terms.

  • PDF

Flexural Performance of Polypropylene Fiber Reinforced EVA Concrete (폴리프로필렌 섬유보강 EVA 콘크리트의 휨 성능)

  • Sung, Chan Yong;Nam, Ki Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.83-90
    • /
    • 2016
  • This study was performed to evaluate the effective analysis of flexural performance for polypropylene fiber (PF) reinforced EVA concrete that can be used in marine bridge, tunnel and agricultural structures under flexural load. The control design was applied in ready mixed concrete using 10 % fly ash of total binder weight used in batch plant. On the basis of the control mix design, there was designed mix types that contained PF ranged from 0 % to 0.5 % by volume ratio into two mix types of using 0 % and 5.0 % EVA contents of total binder weight. Before evaluating the flexural performance, we tested compressive strength and flexural strength to evaluate whether polypropylene fiber reinforced concrete could be used or not in site. The method of flexural performance evaluation was applied by ASTM C 1609. These results showed the maximum compressive strength and flexural strength was measured at each E5P1 and E5P2. Concrete reinforced with PF exhibited deflection-softening behavior. In the concrete reinforced with 0.4 % PF contents and containing 5.0 % EVA, the flexural performance was the best.

The Compressive Strength and Durability Properties of Polypropylene Fiber Reinforced EVA Concrete (폴리프로필렌 섬유 보강 EVA 콘크리트의 압축강도 및 내구성)

  • Nam, Ki Sung;Sung, Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.11-19
    • /
    • 2015
  • The important properties of EVA (ethylene vinyl acetate) redispersible polymer was waterproof, densification of internal pore space of concrete and ball bearing and micro filler. Also, the significant role of polypropylene(PP) fiber was crack control and blockade of movement for deterioration factors. The most studies for EVA were limited in the field of mortar and PP fiber reinforced concrete had been studied in the state of being restricted unit water content, rich mix and mixing much of the fiber without considering construction site. Therefore, the control mix design were applied in ready mixed concrete using 10 % fly ash of total cement weight used in batch plant. On the basis of control mix design, EVA contents ranging from 0 % to 10 % of total cement weight and PP fiber contents ranging from 0 % to 0.5 % of EVA concrete volume were used in the mix designs. The results showed the maximum compressive strength value was measured at EVA 5.0 % and PP fiber 0.1 %, the minimum water absorption ratio was at EVA 10 % and PP fiber 0 %, the durability factor for freezing and thawing resistance was at EVA 5.0 % and PP fiber 0.3 % and the minimum weight reduction ratio of resistance to sulfuric acid attack was at EVA 10 % and PP fiber 0.5 % after curing age 42days. Meanwhile, From these results, PP fiber reinforced EVA concrete would be very benefit, if each optimal mix types were used in hydraulic structures, underground utilities and agricultural structures.

A study of the replacement of desulphurization slag for sand to ready-mixed soil materials (RMSM)

  • Shiha, Yi-Fang;Tseng, Shih-Shong;Wang, Her-Yung;Wei, Chih-Ting
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.423-433
    • /
    • 2016
  • After the industrial of steelmaking by-products are processed properly, they can be used in civil engineering, not only as a substitute for natural resources and to reduce costs, but also to provide environmental protection. This study used different amounts (10%, 20%, 30%, 40%,and 50%) of desulphurization slag to replace natural fine aggregates in ready-mixed soil materials, and tested the physical and fresh properties (slump, slump flow, tube flow, initial setting time, and bleeding) and hardened properties (compressive strength, ball drop, ultrasonic pulse velocity) of the materials. The variations between the performances of the materials with different mix proportions were discussed. When desulphurization slag is used in RMSM, the workability can be enhanced obviously significantly. When the replacement of desulphurization slag is 50%, the slump flow is increased by 110mm compared with the control group, and the initial setting time increases as the replacement increases, because of bleeding. When the replacement is 10% and 20%, the compressive strength at various ages is higher than that of the control group. When the replacement is 10%, the compressive strength at 7 days is higher than that of the control group by 60%, and the ultrasonic pulse velocity is proportional to the compressive strength, which increases with age and decrease as the replacement increases. An appropriate replacement can effectively accelerate construction, and allow projects to be finished ahead of schedule; therefore, an appropriate replacement, is applicable for ready-mixed soil materials.

Predicting strength development of RMSM using ultrasonic pulse velocity and artificial neural network

  • Sheen, Nain Y.;Huang, Jeng L.;Le, Hien D.
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.785-802
    • /
    • 2013
  • Ready-mixed soil material, known as a kind of controlled low-strength material, is a new way of soil cement combination. It can be used as backfill materials. In this paper, artificial neural network and nonlinear regression approach were applied to predict the compressive strength of ready-mixed soil material containing Portland cement, slag, sand, and soil in mixture. The data used for analyzing were obtained from our testing program. In the experiment, we carried out a mix design with three proportions of sand to soil (e.g., 6:4, 5:5, and 4:6). In addition, blast furnace slag partially replaced cement to improve workability, whereas the water-to-binder ratio was fixed. Testing was conducted on samples to estimate its engineering properties as per ASTM such as flowability, strength, and pulse velocity. Based on testing data, the empirical pulse velocity-strength correlation was established by regression method. Next, three topologies of neural network were developed to predict the strength, namely ANN-I, ANN-II, and ANN-III. The first two models are back-propagation feed-forward networks, and the other one is radial basis neural network. The results show that the compressive strength of ready-mixed soil material can be well-predicted from neural networks. Among all currently proposed neural network models, the ANN-I gives the best prediction because it is closest to the actual strength. Moreover, considering combination of pulse velocity and other factors, viz. curing time, and material contents in mixture, the proposed neural networks offer better evaluation than interpolated from pulse velocity only.

A Study on the Possibility of Using Concrete Blocks with Ready Mixed Concrete Sludge (레미콘 슬러지를 활용한 콘크리트블록 활용에 대한 기초 연구)

  • Jung, Jae-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.307-312
    • /
    • 2019
  • Sludge generated in the production of ready-mixed concrete is classified as waste and processed at a high cost. In particular, small and medium-sized ready-mix manufacturer are burdened with such costs, and some companies are illegally processing them. Therefore, the purpose of this study is to suggest a method for recycled remicon sludge as a concrete block composition. When the remicon sludge is simply dried, the residual chemical admixture and ettringitee contained in the sludge are present, so that the compressive strength of the concrete block and the compressive strength after freezing and thawing are largely deteriorated to meet the quality standards of the concrete shore and retaining wall block It was not possible to do. As a method for satisfying the physical performance, it was found that the remicon sludge was calcined at a high temperature of about $900^{\circ}C$. to decompose ettringite and residual chemical admixture and then used it.

An Experimental Study on the Properties of Fresh and Hardened Ready Mixed Concrete Using EEZ sand and Crush sand (EEZ모래와 부순모래를 사용한 레미콘의 굳지않은 성상 및 경화성상에 관한 연구)

  • Shin Seung-Bong;Koo Kyung-Mo;Na Chul-Sung;Ryu Jae-Chul;Kim Gyu-Yong;Kim Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.53-56
    • /
    • 2006
  • Recently, trouble of sand supplying is occurred according to exhaustion of natural sand resources. Therefore various measures are proposed for solution of trouble of sand supply and crushed sand among measures is used as one of most universal measures. But because crushed sand have poor particle shape and plenty of makes micro particle, the quality of concrete using crushed sand deteriorated. Therefore, this study evaluated engineering property of concrete with replacement ratio of crushed sand and EEZ sand and applied evaluation result to fundamental data for quality control of concrete using crushed sand and EEZ sand. The result of this study have shown that quality of concrete using crushed sand and EEZ sand and The compressive strength of concrete up to 50, 70% EEZ sand replacement by crush sand, nearly equal to that of general sand.

  • PDF

Production of Ready-to-Reconstitute Functional Beverages by Utilizing Whey Protein Hydrolysates and Probiotics

  • Kumar, Sabbini Kalyan;Jayaprakasha, Heddur Manjappa;Paik, Hyun-Dong;Kim, Soo-Ki;Han, Song-Ee;Jeong, A-Ram;Yoon, Yoh-Chang
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.575-581
    • /
    • 2010
  • This investigation was aimed at developing a ready-to-reconstitute beverage by utilizing probiotics and whey protein hydrolysates carrying bioactive peptides. Cheddar cheese whey was ultrafiltered. The 18% protein retentate was subjected to protein hydrolysis using Neutrase. The hydrolyzed retentate was further condensed to 35% total solids and spray-dried at $75^{\circ}C$ outlet air temperature. Different levels of sugar, citric acid and stabilizer were blended for spray-dried hydrolysates. Spray-dried hydrolysate was further inoculated with different levels of probiotics grown in a whey medium and dried in fluidized-bed drier at $40^{\circ}C$ to obtain a ready-to-reconstitute beverage. Hydrolysis was greatest at an enzyme:substrate ratio of 1:25 for 3 h. Spray-dried hydrolysate reconstituted to 1% protein and blended with 15% sugar, 0.2% citric acid and 0.15% xantham gum resulted in a superior product with no sedimentation. Accordingly, sugar, citric acid and xanthum gum were dry-blended with spray-dried hydrolysates. Bifidobacterium bifidum and Lactobacillus acidophilus that was grown separately in a whey medium, blended to produce 2% spray-dried hydrolysate and dried as described above resulted in a readyto-reconstitute beverage mix. The fluidized dried product typically exhibited a probiotic count of $10^8$colony forming units (CFU)/g. However, blending of probiotic to the retentate and direct spray-drying precipitously reduced the probiotic count to $10^4$ CFU/g of powder.

Application of support vector regression for the prediction of concrete strength

  • Lee, Jong-Jae;Kim, Doo-Kie;Chang, Seong-Kyu;Lee, Jang-Ho
    • Computers and Concrete
    • /
    • v.4 no.4
    • /
    • pp.299-316
    • /
    • 2007
  • The compressive strength of concrete is a commonly used criterion in producing concrete. However, the test on the compressive strength is complicated and time-consuming. More importantly, since the test is usually performed 28 days after the placement of the concrete at the construction site, it is too late to make improvements if unsatisfactory test results are incurred. Therefore, an accurate and practical strength estimation method that can be used before the placement of concrete is highly desirable. In this study, the estimation of the concrete strength is performed using support vector regression (SVR) based on the mix proportion data from two ready-mixed concrete companies. The estimation performance of the SVR is then compared with that of neural network (NN). The SVR method has been found to be very efficient in estimation accuracy as well as computation time, and very practical in terms of training rather than the explicit regression analyses and the NN techniques.