• Title/Summary/Keyword: reactors

Search Result 1,809, Processing Time 0.027 seconds

Macro-environmental Drivers and Technological Evolution of Complex Product System: Evidence from Nuclear Power Plant (거시환경요인과 복합제품시스템의 기술진화: 원자력 발전 플랜트의 사례를 중심으로)

  • Kwak, Kiho;Kim, Wonjoon;Kim, Minki;Cho, Chang Yeon
    • Journal of Technology Innovation
    • /
    • v.25 no.2
    • /
    • pp.89-125
    • /
    • 2017
  • Complex product systems (CoPs) is a engineering-intensive products with high-ended design technology, which are closely linked with national economic growth and development of social infrastructures. Accordingly, in order to understand the technological evolution of CoPs, it is necessary to identify the macro-environmental drivers surrounding the CoPs and their impact on the technological evolution of the CoPS. Therefore, we investigate the effect of policy, economic and social drivers on the technological evolution of CoPS by implementing the longitudinal case study on nuclear power plant during the periods between 1950 and 2010s. Based on the analysis of various sources of secondary data and primary data through interviews, we found that the technological evolution of nuclear power plant is progressed as "Phase 1: Application research for peaceful utilization of nuclear energy" between 1950s and 1960s, "Phase 2: The first renaissance of nuclear energy" during 1970s, "Phase 3: Enhancement of safety and the catch-up of latecomers in nuclear energy" between 1990s and 2000s, and "Phase 4: Top prioritization of safety and the development of next generation reactors for the second renaissance of nuclear energy" since 2010s. We also found that various kinds of policy, economic and social drivers, such as energy policy, investment in technology development, economic growth and energy demand, social acceptability and environmental concern, have affected the technology evolution of nuclear power plant at each phase. We emphasize the role of macroenvironmental drivers in the technological evolution of CoPS. We also suggest that countries that endeavor to develop CoPs need to utilize those drivers for enhancing competitiveness and sustaining leadership.

Study of CO2 Carbonation-Regeneration Characteristics of Potassium-Based Dry Sorbents According to Water Vapor Contents of Inlet Gas and Regeneration Temperature in the Cycle Experiments of Bubbling Fluidized-Bed Reactor (회분식 기포유동층 반응기에서 K-계열 건식흡수제의 주입수분농도 및 재생반응온도에 따른 CO2 흡수-재생 반응특성 연구)

  • Park, Keun-Woo;Park, Yeong Seong;Park, Young Cheol;Jo, Sung-Ho;Yi, Chang-Keun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.349-354
    • /
    • 2009
  • In this study, a bubbling fluidized-bed reactor was used to study $CO_2$ capture from flue gas using a potassium-based dry sorbent. A dry sorbent, manufactured by the Korea Electric Power Research Institute, consists of 35% of $K_2CO_3$ for $CO_2$ absorption and 65% of supporters for mechanical strength. $H_2O$, a reactant of the carbonation reaction, was supplied in the reactor as a form of saturated water vapor at a given temperature. The experiment of the regeneration reaction was performed by raising up to a given temperature using $N_2$ as a fluidization gas. It was indicated that sorption capacity and regenerability of dry sorbents showed high-efficiency at $1.97\;mol\;H_2O/mol\;CO_2$ and $400^{\circ}C$, respectively. The regenerated sorbent samples were analyzed by TGA to confirm the extent of the reaction. When the regeneration temperature was $150^{\circ}C$, the regenerability of dry sorbents was about 60%, which was capable of applying those sorbents to a two-interconnected fluidized-bed reactor system with continuous solid circulation. The results obtained in this study can be used as basic data for designing and operating a large scale $CO_2$ capture process with two fluidized-bed reactors.

Design and Optimization of Pilot-Scale Bunsen Process in Sulfur-Iodine (SI) Cycle for Hydrogen Production (수소 생산을 위한 Sulfur-Iodine Cycle 분젠반응의 Pilot-Scale 공정 모델 개발 및 공정 최적화)

  • Park, Junkyu;Nam, KiJeon;Heo, SungKu;Lee, Jonggyu;Lee, In-Beum;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.235-247
    • /
    • 2020
  • Simulation study and validation on 50 L/hr pilot-scale Bunsen process was carried out in order to investigate thermodynamics parameters, suitable reactor type, separator configuration, and the optimal conditions of reactors and separation. Sulfur-Iodine is thermochemical process using iodine and sulfur compounds for producing hydrogen from decomposition of water as net reaction. Understanding in phase separation and reaction of Bunsen Process is crucial since Bunsen Process acts as an intermediate process among three reactions. Electrolyte Non-Random Two-Liquid model is implemented in simulation as thermodynamic model. The simulation results are validated with the thermodynamic parameters and the 50 L/hr pilot-scale experimental data. The SO2 conversions of PFR and CSTR were compared as varying the temperature and reactor volume in order to investigate suitable type of reactor. Impurities in H2SO4 phase and HIX phase were investigated for 3-phase separator (vapor-liquid-liquid) and two 2-phase separators (vapor-liquid & liquid-liquid) in order to select separation configuration with better performance. The process optimization on reactor and phase separator is carried out to find the operating conditions and feed conditions that can reach the maximum SO2 conversion and the minimum H2SO4 impurities in HIX phase. For reactor optimization, the maximum 98% SO2 conversion was obtained with fixed iodine and water inlet flow rate when the diameter and length of PFR reactor are 0.20 m and 7.6m. Inlet water and iodine flow rate is reduced by 17% and 22% to reach the maximum 10% SO2 conversion with fixed temperature and PFR size (diameter: 3/8", length:3 m). When temperature (121℃) and PFR size (diameter: 0.2, length:7.6 m) are applied to the feed composition optimization, inlet water and iodine flow rate is reduced by 17% and 22% to reach the maximum 10% SO2 conversion.

Analysis of Water Quality Improvement of Ceratophyllum demersum under Laboratory Condition - by Nutrients Removal Efficiency (실험실 조건에서 붕어마름의 수질개선 효과 분석 - 영양염류 제거 효율을 중심으로)

  • Ahn, Chang Hyuk;Joo, Jin Chul;Joo, Won Jung;Ahn, Hosang;Lee, Saeromi;Oh, Ju Hyun;Song, Ho Myeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.283-288
    • /
    • 2013
  • To evaluate the ability of the submerged plant, Ceratophyllum demersum's (C. demersum) to remove nutrients and to inhibit growth of cyanobacteria, a total of 6 mesocosms were conducted in a batch reactor for 9 days. From the 84 hr of the experiment, C. demersum was stabilized and showed daily cycle trends according to changes in pH and DO levels. The concentration of nutrients, $NH_3{^+}$, $NO_3{^-}$ and $PO_4{^3}$ continuously decreased until 9 days of the experiment, with the rapid decrease in nutrient concentration for the first 24 hours. High correlation coefficient ($r^2{\geq}0.96$, p<0.001) between the amount of C. demersum's biomass per unit area and the nutrients removal level were derived, and greater C. demersum's biomass per unit area showed higher removal efficiency of nutrients. However, there were differences in the C. demersum's activity level between batch reactors with higher and similar density of the C. demersum, but nonetheless water purification effect appears to have a significant influence due to attached algae and microorganisms. The growth rate of harmful cyanobacteria, Microcystis aeruginosa (M. aeruginosa) with C. demersum's density of 2,500 g $fw/m^2$ (100% of cover degree) was 0.31 /day, compared to the growth rate of 0.47 /day for the control group (0% of cover degree). In terms of number of cells, the control group had 1.7 times higher number of cells than the experimental group, proving that C. demersum has the ability to inhibit the growth of harmful cyanobacteria.

Characteristic Changes of Swine Manure by Air Suction Composting System (돈분 퇴비화 시 공기 흡입 시스템에 따른 퇴비화 특성 변화)

  • Lee, Dong-jun;Kim, Jung Kon;Jeong, Kwang-Hwa;Cho, Won-Mo;Ravindran, B.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.63-74
    • /
    • 2016
  • The objective of this study was to investigate the variations of physico-chemical properties during the swine manure composting, sawdust as the bulking agent was composted at different points (Top layer, Side of middle layer, Bottom layer). Air suction system with constant bottom aeration in bench scale reactors (30 L). The highest temperature was reached in the range of $58^{\circ}C$ to $62^{\circ}C$ on $3^{rd}$ day and this thermophilic phase (> $50^{\circ}C$) was continued for 3 days in all the treatment mixtures. However, the temperature was gradually decreased to room temperature at the end of 60 day composting process. Except control, the discharged ammonia ($NH_3$) was a maximum in the treatment order of Top layer>Bottom layer>Side of middle layer as 500 ppm, 162 ppm and 120 ppm, respectively, on the $4^{th}$ day and showing that Top layer point Air suction produce much more ammonia content than the other point. During the composting process, the total Kjeldahl nitrogen (TKN) was gradually increased due to the mass loss in the composting mixtures. At the same time, C/N ratio was decreased to Top layer, 13; Side of middle layer, 12 and Bottom layer, 13 at Air suction points. The significant reduction of C/N ratio in all different air suction system when manure was matured. The $NH_4-N$ to $NO_3-N$ ratio was recorded as 10.52 at the initial stage of the compost mixtures and reduced to 0.97 (Top layer), 0.70 (Side of middle layer), 3.2 (Bottom layer) because of manure decomposition. The overall results revealed that Top layer and Side of middle layer Air suction is a suitable option when compared other point for high quality composts.

Activation Analysis of Dual-purpose Metal Cask After the End of Design Lifetime for Decommission (설계수명 이후 해체를 위한 금속 겸용용기의 방사화 특성 평가)

  • Kim, Tae-Man;Ku, Ji-Young;Dho, Ho-Seog;Cho, Chun-Hyung;Ko, Jae-Hun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.343-356
    • /
    • 2016
  • The Korea Radioactive Waste Agency (KORAD) has developed a dual-purpose metal cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. The metal cask was designed in compliance with international and domestic technology standards, and safety was the most important consideration in developing the design. It was designed to maintain its integrity for 50 years in terms of major safety factors. The metal cask ensures the minimization of waste generated by maintenance activities during the storage period as well as the safe management of the waste. An activation evaluation of the main body, which includes internal and external components of metal casks whose design lifetime has expired, provides quantitative data on their radioactive inventory. The radioactive inventory of the main body and the components of the metal cask were calculated by applying the MCNP5 ORIGEN-2 evaluation system and by considering each component's chemical composition, neutron flux distribution, and reaction rate, as well as the duration of neutron irradiation during the storage period. The evaluation results revealed that 10 years after the end of the cask's design life, $^{60}Co$ had greater radioactivity than other nuclides among the metal materials. In the case of the neutron shield, nuclides that emit high-energy gamma rays such as $^{28}Al$ and $^{24}Na$ had greater radioactivity immediately after the design lifetime. However, their radioactivity level became negligible after six months due to their short half-life. The surface exposure dose rates of the canister and the main body of the metal cask from which the spent nuclear fuel had been removed with expiration of the design lifetime were determined to be at very low levels, and the radiation exposure doses to which radiation workers were subjected during the decommissioning process appeared to be at insignificant levels. The evaluations of this study strongly suggest that the nuclide inventory of a spent nuclear fuel metal cask can be utilized as basic data when decommissioning of a metal cask is planned, for example, for the development of a decommissioning plan, the determination of a decommissioning method, the estimation of radiation exposure to workers engaged in decommissioning operations, the management/reuse of radioactive wastes, etc.

Investigation on the Characteristics Variation According to Air Supply Capacity in Layer Manure by Composting (공기공급량에 따른 산란계분의 퇴비화 특성변화에 관한 연구)

  • Kwag, J.H.;Cho, S.H.;Jeong, K.H.;Kim, J.H.;Choi, D.Y.;Jeong, Y.S.;Jeong, M.S.;Kang, H.S.;Ra, C.S.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.2
    • /
    • pp.135-142
    • /
    • 2010
  • The composting of layer manure is economical and efficiently process. In this study, the variation of composting characteristics in layer manure was investigated according to air supply capacity. The fermented compost was added in layer manure and mixed with sawdust inside composting reactors. The level of air supply capacity was varied in the range of $50{\sim}200\;{\ell}/m^3/min$. During composting the temperature variations of composting piles was different the temperatures of composting piles for T-1 ($50\;{\ell}/m^3/min$) and T-2 ($100\;{\ell}/m^3/min$) were reached at $40^{\circ}C$ and $50^{\circ}C$ within 2 days, respectively. For T-3 ($150\;{\ell}/m^3/min$) and T-4 ($200\;{\ell}/m^3/min$), their temperatures was $60^{\circ}C$ within same days and maintained during 8 days. Water contents decreased according to the air supply capacity; 8.9%, 15.4%, 18.0% and 18.6% for T-1, T-2, T-3 and T-4. The weight ratios of T-1, T-2, T-3 and T-4 were reduced to 12.8%, 15.6%, 18.1% and 17.9%, respectively. The decreasing volumetric ratios of T-1, T-2, T-3 and T-4 were 18.0%, 21.0%, 22.3% and 22.0%. The oxygen discharge concentrations during composting were 12 ppm for T-1, T-2 and 9 ppm for T-3 and T-4. After composting, fertilizer components such as total nitrogen (TN) and phosphorous pentoxide ($P_2O_5$) were examined at each air supply capacity. Nitrogen contents of the T-1, T-2, T-3 and T-4 were 0.75%, 0.74%, 0.72% and 0.64%. Also, The contents of $P_2O_5$ were 0.35%, 0.40%, 0.38% and 0.42% for T-1, T-2, T-3 and T-4.

Recovery of N and P Resources from Animal Wastewater by Struvite Crystallization (Struvite 결정화에 의한 축산폐수로 부터 질소.인 자원의 재생)

  • Jo, W.S.;Yoon, S.J.;Ra, C.S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.875-884
    • /
    • 2003
  • Operational parameters for struvite crystallization, as a process to recover nitrogen and phosphorus resources from animal wastewater, were studied in this research. Crystallization distinctive of NH$_4$-N and PO$_4$$^{3-}$ in accordance to chemical sources, influent pH, aeration and stirring was examined using 2L of working volume of struvite reactor. Also, to find an effective treatment process combining with electrolysis method, removal characteristics of NH$_4$-N and PO$_4$$^{3-}$ in 6 different processes was tested. As chemical sources for the derivation of struvite formation, MgSO$_4$ and MgCl$_2$ were superior to CaCO$_3$ and CaCl$_2$. From experiment which was conducted to know the effects of aeration and stirring on struvite formation, it was revealed that aeration stimulated the crystallization reaction by inducing faster pH increase. While 90% of P removal was achieved within 1 hour under aeration, 14 hours was consumed under stirring condition. Struvite formation under aeration was affected by influent pH. No crystallization was observed at pH 5 level, but active crystallization reaction was induced over pH 6.0. 95% of P removal by struvite formation at pH 6, 7 and 9 was achieved within 3h, 2h and 10 min., respectively. However, over pH 10, operational problem due to excessive foam formation occurred, and blunting of crystallization reaction was observed at pH 11. When consider the pH range of animal wastewater, pH 7 to 9, efficient struvite formation could be achieved by simple aeration, without any chemical usage for pH adjustment. Among tested processes, the treatment process which electrolyzing the supernatant from struvite reactor, providing air to both reactors, showed best pollutant removal efficiencies. In this combined process, the removal efficiencies of NH$_4$-N and PO$_4$$^{3-}$ was 86% and 98%, respectively, and 92.4% of color removal was obtained.

The Evaluation of UV-induced Mutation of the Microalgae, Chlorella vulgaris in Mass Production Systems (자외선에 의해 유도된 Chlorella vulgaris 돌연변이 균주의 대량 생산 시스템에서의 평가)

  • Choi, Tae-O;Kim, Kyong-Ho;Kim, Gun-Do;Choi, Tae-Jin;Jeon, Young Jae
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1137-1144
    • /
    • 2017
  • The microalgae Chlorella vulgaris has been considered an important alternative resource for biodiesel production. However, its industrial-scale production has been constrained by the low productivity of the biomass and lipid. To overcome this problem, we isolated and characterized a potentially economical oleaginous strain of C. vulgaris via the random mutagenesis technique using UV irradiation. Two types of mass production systems were compared for their yield of biomass and lipid content. Among the several putatively oleaginous strains that were isolated, the particular mutant strain designated as UBM1-10 in the laboratory showed an approximately 1.5-fold higher cell yield and lipid content than those from the wild type. Based on these results, UBM1-10 was selected and cultivated under outdoor conditions using two different types of reactors, a tubular-type photobioreactor (TBPR) and an open pond-type reactor (OPR). The results indicated that the mutant strain cultivated in the TBPR showed more than 5 times higher cell concentrations ($2.6g\;l^{-1}$) as compared to that from the strain cultured in the OPR ($0.5g\;l^{-1}$). After the mass cultivation, the cells of UBM1-10 and the parental strain were further investigated for crude lipid content and composition. The results indicate a 3-fold higher crude lipid content from UBM1-10 (0.3%, w/w) as compared to that from the parent strain (0.1% w/w). Therefore, this study demonstrated that the economic potential of C. vulgaris as a biodiesel production resource can be increased with the use of a photoreactor type as well as the strategic mutant isolation technique.

Metabolic Responses of Activated Sludge to Pentachlorophenol in a SBR System (SBR 처리 장치에서 활성 슬럿지의 대사에 미치는 Pentachlorophenol의 독성 효과)

  • KIM Sung-Jae;Benefield Larry D.
    • Journal of Aquaculture
    • /
    • v.6 no.4
    • /
    • pp.323-338
    • /
    • 1993
  • The primary objective of this study was to examine the toxic effects of PCP on activated sludge and to analyze its metabolic responses while treating wastewater containing pentachlorophenol (PCP) in a sequencing batch reactor (SBR) system operating under different control strategies. This study was conducted in two phases 1 and 2 (8-hr and 12-hr cycles). Each phase was operated with two control strategies I and II. Strategy I (reactor 1) involved rapid addition (5 minutes to complete) of substrate to the reactor with continuous mixing but no aeration for 2 hours. Strategy II (reactor 2) involved adding the feed continuously during the first 2 hours of the cycle when the system was mixed but not aerated. During both phases each reactor was operated at a sludge age of 15 days. The synthetic wastewater was used as a feed. The COD of the feed solution was about 380 mg/L. After the reference response for both reactors was established, the steady state response of each system was established for PCP feed concentrations of 0.1 mg/L, 1.0 mg/L, and 5.0 mg/L in SBR systems operating on both 8-hr and 12-hr cycles. Soluble COD removal was not inhibited at any feed PCP concentrations used. At 5.0 mg/L feed PCP concentration and in SBR systems operating on phase 2, the concentrations or ML VSS were decreased; selective pressure on the mixed biomass might be increased, narrowing the range of possible ecological responses; the settleability of activated sludge was poor; the SOURs were increased, showing that the systems were shocked. Nitrification was made to some extent at all concentrations of feed PCP in SBR systems operating on phase 2 whereas in SBR systems operating on phase 1 little nitrification was observed. Then, nitrification will be delayed as much as soluble COD removal is retarded due to PCP inhibition effects. Enhanced biological phosphorus removal occurring in the system operating with control strategy I during phase 1 of this work and in the presence of low concentrations of PCP was unreliable and might cease at anytime, whereas enhanced biological phosphorus removal occurring in the system operating with either control strategy I or II during phase 2 of this work and in the presence of feed PCP concentrations up to 1.0 mg/L was reliable. When, however, such processes were exposed to 5.0 mg/L PCP dose, enhanced phosphorus removal ceased and never returned.

  • PDF