References
- Ahmad, A., Yasin, N. M., Derek, C. and Lim, J. 2011. Microalgae as a sustainable energy source for biodiesel production: A review. Renew. Sustainable Energy Rev. 15, 584-593. https://doi.org/10.1016/j.rser.2010.09.018
- Amin, S. 2009. Review on biofuel oil and gas production processes from microalgae. Energy Convers. Manage. 50, 1834-1840. https://doi.org/10.1016/j.enconman.2009.03.001
- Anthony, J., Rangamaran, V. R., Gopal, D., Shivasankarasubbiah, K. T., Thilagam, M. L., Peter Dhassiah, M., Padinjattayil, D. S., Valsalan, V. N., Manambrakat, V., Dakshinamurthy, S., Thirunavukkarasu, S. and Ramalingam, K. 2015. Ultraviolet and 5'fluorodeoxyuridine induced random mutagenesis in Chlorella vulgaris and its impact on fatty acid profile: A new insight on lipid-metabolizing genes and structural characterization of related proteins. Mar. Biotechnol. 17, 66-80. https://doi.org/10.1007/s10126-014-9597-5
- Banerjee, C., Dubey, K. K. and Shukla, P. 2016. Metabolic engineering of microalgal based biofuel production: Prospects and challenges. Front. Microbiol. 7, 432.
- Brennan, L. and Owende, P. 2010. Biofuels from microalgae -a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustainable Energy Rev. 14, 557-577. https://doi.org/10.1016/j.rser.2009.10.009
- Carvalho, A. P., Meireles, L. A. and Malcata, F. X. 2006. Microalgal reactors: A review of enclosed system designs and performances. Biotechnol. Prog. 22, 1490-1506. https://doi.org/10.1002/bp060065r
- Chen, W., Sommerfeld, M. and Hu, Q. 2011. Microwave-assisted nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour. Technol. 102, 135-141. https://doi.org/10.1016/j.biortech.2010.06.076
- Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
- Choi, T. O. 2015. High-density culturing apparatus of microalgae of air exchange type. K. Chloland Co. Ltd (ed.), Republic of Korea (Patent No: 10-2015-0018351).
- Dianursanti Rizkytata, B. T., Gumelar, M. T. and Abdullah, T. H. 2014. Industrial tofu wastewater as a cultivation medium of microalgae Chlorella vulgaris. Energy Procedia 47, 56-61. https://doi.org/10.1016/j.egypro.2014.01.196
- El-Kassas, H. Y. 2013. Growth and fatty acid profile of the marine microalga Picochlorum sp. Grown under nutrient stress conditions. Egypt. J. Aquat. Res. 39, 233-239. https://doi.org/10.1016/j.ejar.2013.12.007
- Guccione, A., Biondi, N., Sampietro, G., Rodolfi, L., Bassi, N. and Tredici, M. R. 2014. Chlorella for protein and biofuels: From strain selection to outdoor cultivation in a green wall panel photobioreactor. Biotechnol. Biofuels 7, 84-84. https://doi.org/10.1186/1754-6834-7-84
- Hounslow, E., Kapoore, R. V., Vaidyanathan, S., Gilmour, D. J. and Wright, P. C. 2016. The search for a lipid trigger: The effect of salt stress on the lipid profile of the model microalgal species Chlamydomonas reinhardtii for biofuels production. Curr. Biotechnol. 5, 305-313. https://doi.org/10.2174/2211550105666160322234434
- Hu, W. 2014. Dry weight and cell density of individual algal and cyanobacterial cells for algae research and development, University of Missouri--Columbia.
- Huntley, M. E., Johnson, Z. I., Brown, S. L., Sills, D. L., Gerber, L., Archibald, I., Machesky, S. C., Granados, J., Beal, C. and Greene, C. H. 2015. Demonstrated large-scale production of marine microalgae for fuels and feed. Algal Res. 10, 249-265. https://doi.org/10.1016/j.algal.2015.04.016
- Katsuda, T., Shimahara, K., Shiraishi, H., Yamagami, K., Ranjbar, R. and Katoh, S. 2006. Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. J. Biosci. Bioeng. 102, 442-446. https://doi.org/10.1263/jbb.102.442
- Kim, J., Jung, J. M., Lee, J., Kim, K. H., Choi, T. O., Kim, J. K., Jeon, Y. J. and Kwon, E. E. 2016. Pyrogenic transformation of Nannochloropsis oceanica into fatty acid methyl esters without oil extraction for estimating total lipid content. Bioresour. Technol. 212, 55-61. https://doi.org/10.1016/j.biortech.2016.04.024
- Lau, K. Y., Pleissner, D. and Lin, C. S. K. 2014. Recycling of food waste as nutrients in Chlorella vulgaris cultivation. Bioresour. Technol. 170, 144-151. https://doi.org/10.1016/j.biortech.2014.07.096
- Mata, T. M., Martins, A. A. and Caetano, N. S. 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sustainable Energy Rev. 14, 217-232. https://doi.org/10.1016/j.rser.2009.07.020
- Rios, L., Klein, B., Luz, L., Maciel Filho, R. and Maciel, M. W. 2015. Nitrogen starvation for lipid accumulation in the microalga species desmodesmus sp. Appl. Biochem. Biotechnol. 175, 469-476. https://doi.org/10.1007/s12010-014-1283-6
- Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G. and Tredici, M. R. 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low cost photobioreactor. Biotechnol. Bioeng. 102, 100-112. https://doi.org/10.1002/bit.22033
- Sharma, K. K., Schuhmann, H. and Schenk, P. M. 2012. High lipid induction in microalgae for biodiesel production. Energies 5, 1532-1553. https://doi.org/10.3390/en5051532
- Slade, R. and Bauen, A. 2013. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53, 29-38. https://doi.org/10.1016/j.biombioe.2012.12.019
- Trentacoste, E. M., Shrestha, R. P., Smith, S. R., Gle, C., Hartmann, A. C., Hildebrand, M. and Gerwick, W. H. 2013. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc. Natl. Acad. Sci. USA. 110, 19748-19753. https://doi.org/10.1073/pnas.1309299110
- Watanabe, A. 1960. List of algal strains in collection at the institute of applied microbiology, university of tokyo. J. Gen. Appl. Microbiol. 6, 283-292. https://doi.org/10.2323/jgam.6.283
- Zayadan, B. K., Purton, S., Sadvakasova, A. K., Userbaeva, A. A. and Bolatkhan, K. 2014. Isolation, mutagenesis, and optimization of cultivation conditions of microalgal strains for biodiesel production. Russ. J. Plant Physiol. 61, 124-130. https://doi.org/10.1134/S102144371401018X
- Zhu, L. D., Li, Z. H. and Hiltunen, E. 2016. Strategies for lipid production improvement in microalgae as a biodiesel feedstock. Biomed. Res. Int. 2016, 8792548.