• Title/Summary/Keyword: reactors

Search Result 1,806, Processing Time 0.032 seconds

A Study on Variation of Colony Forming Units of Heterotrophic Bacteria by Input Ratios of Bulking Materials in Aerobic Composting of Food Wastes (음식물류폐기물의 호기성 퇴비화에 있어서 팽화재 투입비에 따른 타가영양세균의 균락형성단위의 변화에 관한 연구)

  • Park, Seok-Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.353-358
    • /
    • 2006
  • This study was performed to evaluate the effects of input ratios of bulking material in aerobic composting of food wastes on variation of colony forming units of heterotrophic bacteria. Wood chips were used as a bulking material. Volume ratios of food wastes to wood chips in reactor of Control, WC-1 and WC-2 were 10/0, 10/5 and 10/10, respectively. Reactors were operated for 24 days with 1hour stirring by 1rpm and 2 hours of the forced aeration per day. WC-2 reached high temperature range faster than WC-1, and the maximum temperature of WC-2 was higher than that of WC-1. This means that the reaction velocity of composting of WC-2 was faster than that of WC-1. Judging from the profile of pH changes, composting of WC-1 proceeded slowly and continuously. Composting of WC-2 proceeded rapidly in the former half reaction period, and kept steady state of high pH in the latter half reaction period. Namely, composting of WC-2 was nearly completed in the former half reaction period. In the case of WC-1 and WC-2. the maximum temperature was followed by the rapid pH increase in 2-3 days, and this was followed by the maximum Colony Forming Units(CFU) in 3 days. But, these three items of WC-2 always appeared faster and higher than those of WC-1.

A Study on VS Removal Efficiency and Methane Emission in Combined Anaerobic Digestion of Livestock Manure and Food Waste (가축분뇨 및 음식물쓰레기의 혐기성 소화 병합처리 시 VS 제거효율과 메탄 발생량의 관한 연구)

  • Choi, Young-Ik;Ji, Hyeon-Jo;Jung, Jin-Hee;Jung, Byung-Gil;Kim, Jung-Geon
    • Journal of Environmental Science International
    • /
    • v.27 no.9
    • /
    • pp.737-742
    • /
    • 2018
  • Livestock manure treatments have become a more serious problem because massive environmental pollutions such as green and red tides caused by non-point pollution sources from livestock manures have emerged as a serious social issue. In addition, more food wastes are being produced due to population growth and increased income level. Since the London Convention has banned the ocean dumping of wastes, some other waste treatment methods for land disposal had to be developed and applied. At the same time, researches have been conducted to develop alternative energy sources from various types of wastes. As a result, anaerobic digestion as a waste treatment method has become an attractive solution. In this study has three objectives: first, to identify the physical properties of the mixture of livestock wastewater and food waste when combining food waste treatment with the conventional livestock manure treatment based on anaerobic mesophilic digestion; second, to find the ideal ratio of waste mixture that could maximize the collection efficiency of methane ($CH_4$) from the anaerobic digestion process; and third, to promote $CH_4$ production by comparing the biodegradability. As a result of comparing the reactors R1, R2, and R3, each containing a mixture of food waste and livestock manure at the ratio of 5:5, 7:3, and 3:7, respectively, R2 showed the optimum treatment efficiencies for the removal of Total Solids (TS) and Volatile Solids (VS), $CH_4$ production, and biodegradability.

Calculation of Low-Energy Reactor Neutrino Spectra for Reactor Neutrino Experiments

  • Riyana, Eka Sapta;Suda, Shoya;Ishibashi, Kenji;Matsuura, Hideaki;Katakura, Jun-ichi
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.155-159
    • /
    • 2016
  • Background: Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. Materials and Methods: To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% $^{235}U$ contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. Results and Discussion: We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. $^{241}Pu$) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate Conclusion: Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

Advanced Control Techniques for Batch Processes Based on Iterative Learning Control Methods (반복학습제어를 기반으로 한 회분공정의 고급제어기법)

  • Lee, Kwang Soon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.425-434
    • /
    • 2006
  • The operability and productivity of continuous processes, especially in petrochemical industries have made remarkable improvement during the past twenty years through advanced process control (APC) typified by model-based predictive control. On the other hand, APC have not been actively practiced in industrial batch processes typified by batch polymerization reactors. Perhaps the main cause for this has been the lack of reliable batch process APC techniques that can overcome the unique problems in industrial batch processes. Recently, some noteworthy progress is being made in this area. New high-performance batch process control techniques that can accommodate and also overcome the unique problems of industrial batch processes have been proposed on the basis of iterative learning control (ILC). In this review paper, recent advancement in the batch process APC techniques are presented, with a particular focus on the variations of the so called Q-ILC method, with the hope that they are widely practiced in different industrial batch processes and enhance their operations.

Effects of Hydrocarbon Additions on Gas-liquid Mass Transfer Coefficients in Biphasic Bioreactors

  • Silva, Teresa Lopes da;Calado, Vitor;Silva, Nadia;Mendes, Rui L.;Alves, Sebastiao S.;Vasconcelos, Jorge M.T.;Reis, Alberto
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.245-250
    • /
    • 2006
  • The effects of aliphatic hydrocarbons (n-hexadecane and n-dodecane) on the volumetric oxygen mass transfer coefficient $(k_L\;a)$ were studied in flat alveolar airlift reactor and continuous stirred tank reactors (CSTRs). In the flat alveolar airlift reactor, high aeration rates (>2vvm) were required in order to obtain efficient organic-aqueous phase dispersion and reliable $k_La$ measurements. Addition of 1% (v/v) n-hexadecane or n-dodecane increased the $k_La$ 1.55- and 1.33-fold, respectively, compared to the control (superficial velocity: $25.8{\times}10^{-3}m/s$, sparger orifice diameter: 0.5 mm). Analysis of the gas-liquid interfacial area a and the liquid film mass transfer coefficient $k_L$ suggests that the observed $k_La$ increase was a function of the media's liquid film mass transfer. Addition of 1% (v/v) n-hexadecane or n-dodecane to analogous setups using CSTRs led to a $k_La$ increase by a factor of 1.68 and 1.36, respectively (superficial velocity: $2.1{\times}10^{-3}m/s$, stirring rate: 250 rpm). These results propose that low-concentration addition of oxygen-vectors to aerobic microbial cultures has additional benefit relative to incubation in purely aqueous media.

A study on the comparison of coated nitrifying bacteria on nitrification efficiency and distribution of nitrifying bacteria

  • Kwon, Hyun-Jin;Yoon, Joung-Yee;Chae, Jong-San;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.434-438
    • /
    • 2005
  • Nitrification characteristics and performance of wastewater treatment plants depend on not only temperature, pH, and dissolved oxygen of the wastewater but also species, distribution, and their metabolic stages of nitrifying bacteria. Due to their low specific growth rate, nitrifying bacteria are easy to wash out of the reactor and need long time to start-up and recover from damaged nitrifiers community. In order to overcome this limitation, nitrifying bacteria were coated on a polyurethane-based media. Laboratory and pilot-scale reactor had been designed and operated to compare the effect of coated nitrifying bacteria on wastewater nitrification efficiency and performance. Furthermore, the species and quantitative distribution of nitrifying bacteria were also investigated in the suspension and on the media. The results showed that nitrifier-coated reactor had better nitrification efficiency and performance than the control experiments. It also demonstrated that the amounts of total nitrifying bacteria of a coated reactor was higher than other reactors and it increased with operation time and wastewater temperature.

  • PDF

Comparison of Fault Current Limiting Characteristics between the separated Three-phase Flux-lock Type SFCL and the Integrated Three-phase Flux-lock Type SFCL (분리된 삼상 자속구속형 전류제한기와 일체화된 삼상 자속구속형 전류제한기의 전류제한 특성 비교)

  • Doo, Seung-Gyu;Du, Ho-Ik;Kim, Min-Ju;Park, Chung-Ryul;Kim, Yong-Jin;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.689-693
    • /
    • 2009
  • We investigate the comparison of fault current characteristics between the separates three-phase flux-lock type superconducting fault current limiter(SFCL) and integrated three-phase flux-lock type superconducting fault current limiter(SFCL). The single-phase flux-lock type SFCL consists of two coils. The primary coil is wound in parallel to the secondary coil on an iron core and superconducting elements are connected to secondary coil in series. Superconducting elements are used by the YBCO coated conductor. The separated three-phase flux-lock type SFCL consists of single-phase flux-phase type SFCL in each phase. But the integrated three-phase flux-lock type SFCL consists of three-phase flux-reactors wound on an iron core. Flux-reactor consists of the same turn's ratio between coil 1 and coil 2 for each single phase. To compare the current limiting characteristics of the separated three-phase flux-lock type SFCL and integrated three-phase flux-lock type SFCL, the short circuit experiments are carried out fault condition such as the single line-to-ground fault. The experimental result shows that fault current limiting characteristic of the separated three-phase flux-lock type SFCL was better than integrated three-phase flux-lock type SFCL. And the integrated three-phase flux-lock type SFCL has an effect on sound phase.

GPS-X Based Modeling on the Process of Gang-byeon Sewage Treatment Plant and Design of Recycle Water Treatment Process (GPS-X 기반 모델링에 의한 강변사업소 처리효율 분석 및 반류수 처리 공정 설계)

  • Shin, Choon Hwan
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1493-1498
    • /
    • 2016
  • The efficiencies of Gang-Byeon sewage treatment facilities, which are based on GPS-X modelling, were analysed and used to design recycle water treatment processes. The effluent of an aeration tank contained total kjeldahl nitrogen (TKN) of 1.8 mg/L with both C-1 and C-2 conditions, confirming that most ammonia nitrogen ($NH_3{^+}-N$) was converted to nitrate nitrogen ($NO_3{^-}-N$). The concentrations of $NH_3{^+}-N$ and $NO_3{^-}-N$ were found to be 222.5 and 227.2 mg/L, respectively, with C-1 conditions and 212.2 and 80.4 mg/L with C-2 conditions. Although C-2 conditions with higher organic matter yielded a slightly higher nitrogen removal efficiency, sufficient denitrification was not observed to meet the discharge standards. For the total nitrogen (T-N) removal efficiency, the final effluent concentrations of T-N were 293.8 mg/L with biochemical oxygen demand (BOD) of 2,500 mg/L, being about 1.5 times lower than that (445.3 mg/L) with BOD of 2,000 mg/L. Therefore, an external carbon source to increase the C/N ratio was required to get sufficient denitrification. During the winter period with temperature less than $10^{\circ}C$, the denitrification efficiency was dropped rapidly even with a high TKN concentration (1,500 mg/L). This indicates that unit reactors (anoxic/aerobic tanks) for winter need to be installed to increase the hydraulic retention time. Thus, to enhance nitrification and denitrification efficiencies, flexible operations with seasons are recommended for nitrification/anoxic/denitrification tanks.

Comparison of Effects of Chaff and Sawdust on Aerobic Composting of Food Wastes (음식물쓰레기의 호기성 퇴비화에 있어서 왕겨와 톱밥의 영향에 관한 비교 연구)

  • 박석환
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.28-34
    • /
    • 2003
  • This study was performed to compare the effects of chaff and sawdust as bulking materials on temperature, pH, weight and volume reduction and salinity in aerobic composting of food wastes. Volume ratios of food wastes to chaff in reactor of Control, Ch-l, Ch-2, Ch-3 and Ch-4 were 4:0, 4:1, 4:2, 4:3 and 4:4, respectively. Volume ratios of food wastes to sawdust in reactor of Control, Sd-l, Sd-2, Sd-3 and Sd-4 were 4:0, 4:1, 4:2, 4:3 and 4:4, respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours aeration per day. The lowering of the volume ratio of food wastes to chaff and sawdust resulted in the reaction at higher reaction temperature and the elongation of the high temperature reaction period. The lowering of the volume ratio of food wastes to chaff and sawdust resulted in faster pH increase. In the volume ratio of 4:3 and 4:4, pH increased faster in food-chaff mixtures than in food-sawdust mixtures. The lowering of the volume ratio of food wastes to chaff and sawdust resulted in faster steady state in the weight reduction rate and the volume reduction rate. The weight reduction rates of chaff mixtures were higher than those of sawdust mixtures, but the volume reduction rates of sawdust mixtures were more higher than those of chaff mixtures. Salinity increased as composting reaction proceeded, due to reduction in mass weight. The final salinity of Control was 2.79%, and the final range of salinities of chaff and sawdust mixtures were 2.18∼2.37% and 1.86∼2.05%, respectively.

Characteristics of the Cyclic Hardening in Low Cycle Environmental Fatigue Test of CF8M Stainless Steel (CF8M 스테인리스 강 저주기 환경피로 실험의 주기적 변형률 경화 특성)

  • Jeong, Il-Seok;Ha, Gak-Hyun;Kim, Tae-Ryong;Jeon, Hyun-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.177-185
    • /
    • 2008
  • Low-cycle environmental fatigue tests of cast austenitic stainless steel CF8M at the condition of fatigue strain rate 0.04%/sec were conducted at the pressure and temperature, 15MPa, $315^{\circ}C$ of a operating pressurized water reactor (PWR). The used test rig was limited to install an extensometer at the gauge length of the cylindrical fatigue specimen inside a small autoclave. So the magnet type LVDT#s were used to measure the fatigue displacement at the specimen shoulders inside the high temperature and high pressure water autoclave. However, the displacement and strain measured at the specimen shoulders is different from the one at the gauge length for the geometry and the cyclic strain hardening effect. Displacement of the fatigue specimen gauge length calculated by FEM (finite element method) used to modify the measured displacement and fatigue life at the shoulders. A series of low cycle fatigue life tests in air and PWR conditions simulating the cyclic strain hardening effect verified that the FEM modified fatigue life was well agreed with the simulating test results. The process and method developed in this study for the environmental fatigue test inside the small sized autoclave would be so useful to produce reliable environmental fatigue curves of CF8M stainless steel in pressurized water reactors.