• 제목/요약/키워드: reactor control

검색결과 1,198건 처리시간 0.021초

Study of oxidation behavior and tensile properties of candidate superalloys in the air ingress simulation scenario

  • Bin Du;Haoxiang Li;Wei Zheng;Xuedong He;Tao Ma;Huaqiang Yin
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.71-79
    • /
    • 2023
  • Air ingress incidents are major safety accidents in very-high-temperature reactors (VHTRs). Air containing a high volume fraction of oxygen may cause severe oxidation of core components at the VHTR, especially for the significantly thin alloy tube wall in the intermediate heat exchanger (IHE). The research objects of this study are Inconel 617 and Incoloy 800H, two candidate alloys for IHE in VHTR. The air ingress accident scenario is simulated with high-temperature air flow at 950 ℃. A continuous oxide scale was formed on the surfaces of both the alloys after the experiment. Because the oxide scale of Inconel 617 has a loose structure, whereas that of Incoloy 800H is denser, Inconel 617 exhibited significantly more severe internal oxidation than Incoloy 800H. Further, Inconel 617 showed a significant decrease in ultimate tensile strength and plasticity after aging for 200 h, whereas Incoloy 800H maintained its tensile properties satisfactorily. Through control experiment under vacuum, we preliminarily concluded that serious internal oxidation is the primary reason for the decline in the tensile properties of Inconel 617.

소듐냉각고속로(원형로) 주요기기 제작 특성 (Manufacturing characteristic of major components for prototype SFR)

  • 최한광;이중곤;전일정;김세훈;이정규;김용수;김철;안동현
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.115-125
    • /
    • 2016
  • The prototype SFR has currently been under design by KAERI. The size of its major components is much larger than that of APR1400 and high temperature materials are applied for it. The increased size of components and those specific materials effect on material procurement, manufacturing process and fabrication facilities. The manufacturing methods are studied for Reactor Vessel/Guard Vessel, Control Rod Drive Mechanism, Heat Exchanger, Primary Pump, Reactor Vessel Internals, Steam Generator and In-Vessel Transfer Machine. The proper manufacturing methods are suggested for each component including side forging technology for ultra large forgings of Reactor Vessel to minimize the weld seams on which In-service Inspection should be conducted.

PROPOSAL FOR DUAL PRESSURIZED LIGHT WATER REACTOR UNIT PRODUCING 2000 MWE

  • Kang, Kyoung-Min;Noh, Sang-Woo;Suh, Kune-Yull
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1005-1014
    • /
    • 2009
  • The Dual Unit Optimizer 2000 MWe (DUO2000) is put forward as a new design concept for large power nuclear plants to cope with economic and safety challenges facing the $21^{st}$ century green and sustainable energy industry. DUO2000 is home to two nuclear steam supply systems (NSSSs) of the Optimized Power Reactor 1000 MWe (OPR1000)-like pressurized water reactor (PWR) in single containment so as to double the capacity of the plant. The idea behind DUO may as well be extended to combining any number of NSSSs of PWRs or pressurized heavy water reactors (PHWRs), or even boiling water reactors (BWRs). Once proven in water reactors, the technology may even be expanded to gas cooled, liquid metal cooled, and molten salt cooled reactors. With its in-vessel retention external reactor vessel cooling (IVR-ERVC) as severe accident management strategy, DUO can not only put the single most querulous PWR safety issue to an end, but also pave the way to very promising large power capacity while dispensing with the huge redesigning cost for Generation III+ nuclear systems. Five prototypes are presented for the DUO2000, and their respective advantages and drawbacks are considered. The strengths include, but are not necessarily limited to, reducing the cost of construction by decreasing the number of containment buildings from two to one, minimizing the cost of NSSS and control systems by sharing between the dual units, and lessening the maintenance cost by uniting the NSSS, just to name the few. The latent threats are discussed as well.

EVALUATION OF GALVANIC CORROSION BEHAVIOR OF SA-508 LOW ALLOY STEEL AND TYPE 309L STAINLESS STEEL CLADDING OF REACTOR PRESSURE VESSEL UNDER SIMULATED PRIMARY WATER ENVIRONMENT

  • Kim, Sung-Woo;Kim, Dong-Jin;Kim, Hong-Pyo
    • Nuclear Engineering and Technology
    • /
    • 제44권7호
    • /
    • pp.773-780
    • /
    • 2012
  • The article presented is concerned with an evaluation of the corrosion behavior of SA-508 low alloy steel (LAS) and Type 309L stainless steel (SS) cladding of a reactor pressure vessel under the simulated primary water chemistry of a pressurized water reactor (PWR). The uniform corrosion and galvanic corrosion rates of SA-508 LAS and Type 309L SS were measured in three different control conditions: power operation, shutdown, and power operation followed by shutdown. In all conditions, the dissimilar metal coupling of SA-508 LAS and Type 309L SS exhibited higher corrosion rates than the SA-508 base metal itself due to severe galvanic corrosion near the cladding interface, while the corrosion of Type 309L in the primary water environment was minimal. The galvanic corrosion rate of the SA-508 LAS and Type 309L SS couple measured under the simulated power operation condition was much lower than that measured in the simulated shutdown condition due to the formation of magnetite on the metal surface in a reducing environment. Based on the experimental results, the corrosion rate of SA-508 LAS clad with Type 309L SS was estimated as a function of operating cycle simulated for a typical PWR.

Simulation of Containment Pressurization in a Large Break-Loss of Coolant Accident Using Single-Cell and Multicell Models and CONTAIN Code

  • Noori-Kalkhoran, Omid;Shirani, Amir Saied;Ahangari, Rohollah
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1140-1153
    • /
    • 2016
  • Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA) by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model). In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP) containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code's results.

핵 융합로 제1벽의 냉각성능에 관한 수치해석적 연구 (Numerical analysis of the cooling effects for the first wall of fusion reactor)

  • 정인수;황영규
    • 설비공학논문집
    • /
    • 제11권1호
    • /
    • pp.18-30
    • /
    • 1999
  • A heat transfer analysis for the two-dimensional (2-D) steady state using finite difference method (FDM) is performed to predict the thermal behavior of the primary first-wall (FW) system of fusion reactor under various geometric and thermo-hydraulic conditions, such as the beryllium (Be) armor thickness, pitch of cooling tube, and coolant velocity. The FW consists of authentic steel (type 316 stainless steel solution annealed) for cooling tubes, Cu for cooling tubes embedding material, and Be for a protective armor, based on the International Thermonuclear Experiment Reactor (ITER) report. The present 2-D analysis, the control volume discretized with hybrid grid (rectangular grid and polar grid) and Gauss-Seidel iteration method are adapted to solve the governing equations. In the present study, geometric and thermo-hydraulic parameters are optimized with consideration of several limitations. Consequently, it is suggested that the adequate pitch of cooling tube is 22-32mm, the beryllium armor thickness is 10-12mm, and that the coolant velocity is 4.5m/s-6m/s for $100^{\circ}C$ of inlet coolant temperature. The cooling tube should locate near beryllium armor. But, it would be better for locating the center of Cu wall, considering problems of material and manufacturing. Also, 2-D analysis neglecting the axial temperature distribution of cooling tube is appropriate, regarding the discretization error in axial direction.

  • PDF

ANALOG COMPUTING FOR A NEW NUCLEAR REACTOR DYNAMIC MODEL BASED ON A TIME-DEPENDENT SECOND ORDER FORM OF THE NEUTRON TRANSPORT EQUATION

  • Pirouzmand, Ahmad;Hadad, Kamal;Suh, Kune Y.
    • Nuclear Engineering and Technology
    • /
    • 제43권3호
    • /
    • pp.243-256
    • /
    • 2011
  • This paper considers the concept of analog computing based on a cellular neural network (CNN) paradigm to simulate nuclear reactor dynamics using a time-dependent second order form of the neutron transport equation. Instead of solving nuclear reactor dynamic equations numerically, which is time-consuming and suffers from such weaknesses as vulnerability to transient phenomena, accumulation of round-off errors and floating-point overflows, use is made of a new method based on a cellular neural network. The state-of-the-art shows the CNN as being an alternative solution to the conventional numerical computation method. Indeed CNN is an analog computing paradigm that performs ultra-fast calculations and provides accurate results. In this study use is made of the CNN model to simulate the space-time response of scalar flux distribution in steady state and transient conditions. The CNN model also is used to simulate step perturbation in the core. The accuracy and capability of the CNN model are examined in 2D Cartesian geometry for two fixed source problems, a mini-BWR assembly, and a TWIGL Seed/Blanket problem. We also use the CNN model concurrently for a typical small PWR assembly to simulate the effect of temperature feedback, poisons, and control rods on the scalar flux distribution.

점 근사 동특성 모델을 이용한 고리 원자력 1호기의 과도출력 전이 해석 (Point Kinetics Approach to the Analysis of Overpower Transients of the Ko-ri Unit 1 Reactor)

  • Hyun Dae Kim;Chang Hyun Chung;Chang Hyo Kim
    • Nuclear Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.153-161
    • /
    • 1981
  • 고리 원자력 1호기에서 일어날 수 있는 가상사고에 의한 동특성 현상이 점근사 원자로 모델에 의한 중성자 및 온도 방정식을 사용하여 해석되었다. 일반적으로 수치해석 결과는 사고해석에 있어서 확실한 동특성 시간전이 현상을 예견하기 위채서는 보다 정밀한 계산모델을 사용해야 된다는 것을 지시한다. 전출력 상태에서 RCCA 인출에 따르는 출력반응의 경우는 점근사 원자로 모델이 고리 1호기의 최종 안정성 분석 보고서의 해석결과와 우수한 일치를 보여줬다.

  • PDF

Photocatalytic Degradation of Gaseous Formaldehyde and Benzene using TiO2 Particulate Films Prepared by the Flame Aerosol Reactor

  • Chang, Hyuksang;Seo, Moonhyeok
    • Environmental Engineering Research
    • /
    • 제19권3호
    • /
    • pp.215-221
    • /
    • 2014
  • Nano-sized $TiO_2$ particles were produced by a premixed flame aerosol reactor, and they were immobilized on a mesh-type substrate in form of particulate film. The reactor made it possible maintaining the original particulate characteristics determined in the flame synthetic process. The particulate morphology and crystalline phase were not changed until the particulate were finally coated on the substrate, which resulted in the better performance of the photocatalytic conversion of the volatile organic compounds (VOCs) in the ultraviolet $(UV)-TiO_2$ system. In the flame aerosol reactor, the various specific surface areas and the anatase weight fractions of the synthesized particles were obtained by manipulating the parameters in the combustion process. The performance of the $TiO_2$ particulate films was evaluated for the destruction of the VOCs under the various UV irradiation conditions. The decomposition rates of benzene and formaldehyde under the irradiation of UV-C of 254 nm in wavelength were evaluated to check the performance of $TiO_2$ film layer to be applied in air quality control system.

EVOLUTION OF NUCLEAR FUEL MANAGEMENT AND REACTOR OPERATIONAL AID TOOLS

  • TURINSKY PAUL J.;KELLER PAUL M.;ABDEL-KHALIK HANY S.
    • Nuclear Engineering and Technology
    • /
    • 제37권1호
    • /
    • pp.79-90
    • /
    • 2005
  • In this paper are reviewed the current status of nuclear fuel management and reactor operational aid tools. In addition, we indicate deficiencies in current capabilities and what future research is judged warranted. For the nuclear fuel management review the focus is on light water reactors and the utilization of stochastic optimization methods applied to the lattice, fuel bundle, core loading pattern, and for BWRs the control rod pattern/core flow design decision making problems. Significant progress in addressing separately each of these design problems on a single cycle basis is noted; however, the outstanding challenge of addressing the integrated design problem over multiple cycles under conditions of uncertainty remains to be addressed. For the reactor operational aid tools review the focus is on core simulators, used to both process core instrumentation signals and as an operator aid to predict future core behaviors under various operational strategies. After briefly reviewing the current status of capabilities, a more in depth review of adaptive core simulation capabilities, where core simulator input data are adjusted within their known uncertainties to improved agreement between prediction and measurement, is presented. This is done in support of the belief that further development of adaptive core simulation capabilities is required to further significantly advance the utility of core simulators in support of reactor operational aid tools.