• 제목/요약/키워드: reaction wheel pendulum

검색결과 9건 처리시간 0.037초

비틀림 자이로휠을 이용한 인버티드 펜듈럼의 제어 (Control of Inverted Pendulum using Twisted Gyro-Wheel)

  • 황정문;표범식;김정한
    • 한국정밀공학회지
    • /
    • 제28권10호
    • /
    • pp.1181-1188
    • /
    • 2011
  • A control system for stabilizing a small robot or inverted pendulum using twisted gyro wheel is proposed. Conventional stabilizer using inertial wheel employs action-reaction force/torque to control a pendulum, which can generate relatively small torque and short period of output. In this paper, a novel actuation method using twisted gyro torque in 3-dimentional space was proposed to stabilizing a pendulum by twisting the assembly including a rotating gyro wheel. In addition, two special control functions for this type of twisted gyro wheel were designed. One is the function of self-adjusting the mass center of the robot and the other is the torque reloading configuration for continuous torque generation. The proposed system was verified by experimental result and simulation. The designed twisted gyro wheel control system can be easily packed in a small size module and installed in a humanoid robot or inverted pendulum type mechanism.

원판의 반작용을 이용한 역진자의 강인 자세 제어 (Robust Position Control of a Reaction Wheel Inverted Pendulum)

  • 박상형;이해창;임성묵;김정수
    • 한국지능시스템학회논문지
    • /
    • 제26권2호
    • /
    • pp.127-134
    • /
    • 2016
  • 본 논문에서는 원판의 반작용을 이용하는 역진자의 강인 자세 제어를 위한 강인 제어 기법을 소개한다. 이를 위해 원판 반작용을 이용하여 자세 조정이 가능한 시스템을 설계한다. 설계된 시스템의 수학적 모델을 구하고 그 수학적 모델을 이용하여 제어기를 설계한다. 설계한 강인 제어 기법은 두 부분으로 구성되어 있다. 초기에는 역진자의 swing up을 위한 수동성 기반의 제어기(passivity based control)를 사용하고 역진자의 자세가 수직 위치 근방에 오면 강인 안정화 제어기로 제어기를 변경한다. 강인 안정화 제어기가 필요한 이유는 역진자 시스템에서 관성 모멘트를 불확실성을 다루기 위함이다. 모의 실험과 실제 실험을 통해 제안하는 제어기가 효과적으로 원판 반작용에 기반한 역진자의 자세 제어를 달성함을 보인다.

비 모델 외바퀴 로봇의 제어 (Control of a Unicycle Robot using a Non-model based Controller)

  • 안재원;김민규;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.537-542
    • /
    • 2014
  • This paper proposes a control system to keep the balance of a unicycle robot. The robot consists of the disk and wheel, for balancing and driving respectively, and the tile angle is measured and used for balancing by the IMU sensor. A PID controller is designed based on a non-model based algorithm to prove that it is possible to control the unicycle robot without any approximated linear system model such as the sliding mode control algorithm. The PID controller has the advantage that it is simple to design the controller and it does not require an unnecessary complex formula. In this paper, assuming that the pitch and roll axis are dynamically decoupled, each of the two controllers are designed separately. A reaction wheel pendulum method is used for the control of the roll axis, that is, for balancing and an inverted pendulum concept is used for the control of the pitch axis. To confirm the performance of the proposed controllers using MATLAB Simulink, the dynamic equations of the robot are derived.

자전거로봇의 균형제어 및 주행제어를 위한 LQR 제어기 설계 (LQR Controller Design for Balancing and Driving Control of a Bicycle Robot)

  • 강석원;박경일;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.551-556
    • /
    • 2014
  • This paper proposes a balancing control and driving control of a bicycle robot based on dynamic modeling of the bicycle robot, which has been derived using the Lagrange equations. For the balancing control of the bicycle robot, a reaction wheel pendulum method has been adopted in this research. By using the dynamics equations of the bicycle robot, an LQR controller has been designed for a balancing and driving control of a bicycle robot. The performance of the balance control is verified experimentally before the driving control, which shows a stable posture within one degree vibrations. To show the dynamic characteristics of the bicycle robot during driving, a trapezoidal velocity trajectory is selected as the references. Through simulations and real experiments, the effectiveness of the proposed algorithm has been demonstrated.

자전거로봇의 균형제어 및 주행 (Balancing and Driving Control of a Bicycle Robot)

  • 이석인;이인욱;김민성;하혁;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.532-539
    • /
    • 2012
  • This paper proposes a balancing and driving control system for a bicycle robot. A reaction wheel pendulum control method is adopted to maintain the balance while the bicycle robot is driving. For the driving control, PID control algorithm with a variable gain adjustment has been developed in this paper, where the gains are heuristically adjusted during the experiments. To measure the angles of the wheels the encoders are used. For the balancing control, a roll controller is designed with a non-model based algorithm to make the shortest cycle. The tilt angle is measured by the fusion of the acceleration and gyroscope sensors, which is used to generate the control input of the roll controller to make the tilt angle zero. The performance of the designed control system has been verified through the real experiments with the developed bicycle robot.

퍼지-슬라이딩모드 제어기를 이용한 외바퀴 로봇의 자세제어 및 방향제어 (Attitude and Direction Control of the Unicycle Robot Using Fuzzy-Sliding Mode Control)

  • 이재오;한성익;한인우;이석인;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.275-284
    • /
    • 2012
  • This paper proposes an attitude and direction control of a single wheel balanced robot. A unicycle robot is controlled by two independent control laws: the mobile inverted pendulum control method for pitch axis and the reaction wheel pendulum control method for roll axis. It is assumed that both roll dynamics and pitch dynamics are decoupled. Therefore the roll and pitch dynamics are obtained independently considering the interaction as disturbances to each other. Each control law is implemented by a controller separately. The unicycle robot has two DC motors to drive the disk for roll and to drive the wheel for pitch. Since there is no force to change the yaw direction, the present paper proposes a method for changing the yaw direction. The angle data are obtained by a fusion of a gyro sensor and an accelerometer. Experimental results show the performance of the controller and verify the effectiveness of the proposed control algorithm.

예측 제어기를 이용한 2바퀴 로봇의 실시간 균형제어 (Real Time Balancing Control of 2 Wheel Robot Using a Predictive Controller)

  • 강진구
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.11-16
    • /
    • 2014
  • 본 논문은 예측제어기를 이용하여 2휠 로봇의 실시간 균형을 유지할 수 있는 자세 제어에 대해 연구하였다. 또한 역방향 진자 제어는 로봇이 진행하는 동안 균형을 유지하기 위하여 도입되었다. 본 논문에서 구현에 사용한 프로세서는 dsPIC30F4013 임베디드 프로세서이며 자체 균형 알고리즘을 설계하고 구현 하는 것이다. 본 연구에서 ARS는 2축의 자이로 각(roll, pitch)과 3축의 가속도계 값(x, y, z)값으로 자세를 계산하도록 하였다. 따라서 본 연구에서는 외란에 대한 자세의 불균형을 극복하기 위한 예측제어기를 제안했으며 이를 원격 시스템의 제어문제에 도입하여 2바퀴 로봇의 선형 제어기와 예측제어기를 결합한 시스템의 시뮬레이션을 수행하였다. 또한 강인한 특성을 실현하기 위해 목표 필터루프를 설계하고 강인도-안정성을 만족하는 제어기를 설계하므로 제어시스템의 안정성을 향상시키고 시스템의 성능의 저하를 최소화함을 확인하였다.

달 탐사선의 동역학 모델링 및 관성 모멘트 추정에 관한 연구 (A Study on Dynamic Modelling and Mass Properties Estimation of the Lunar Module)

  • 심상현;김광진;이상철;고상호;류동영;주광혁
    • 한국항공운항학회지
    • /
    • 제18권4호
    • /
    • pp.30-37
    • /
    • 2010
  • This paper deals with attitude determination and parameter estimation problems for a lunar module. For this we first derive equations of motion for the lunar module by considering allocation locations (configurations) of reaction thruster and a reaction wheel assembly. The lunar module is assumed as a rigid body. In order to include the effect of fuel sloshing on the dynamics of the lunar module, we model it as a spherical pendulum for a simple analysis. For estimating angular rates and moment of inertia of the module, we employ an extended Kalman filter and the least mean square algorithms, respectively. Finally we construct a dynamical model for the lunar module by combining all these elements.

외바퀴 로봇의 동적 속도 제어 (Dynamic Speed Control of a Unicycle Robot)

  • 한인우;황종명;한성익;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-9
    • /
    • 2013
  • This paper presents a new control algorithm for dynamic control of a unicycle robot. The unicycle robot motion consists of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel pendulum. The unicycle robot doesn't have any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Euler-Lagrange equation is applied to derive the dynamic equations of the unicycle robot to implement the dynamic speed control of the unicycle robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and LQ regulator are utilized to guarantee the stability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based sliding mode controller has been adopted to minimize the chattering by the switching function. The LQR controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the wheel. The control performance of the two control systems form a single dynamic model has been demonstrated by the real experiments.