• Title/Summary/Keyword: reaction diffusion

Search Result 969, Processing Time 0.026 seconds

A Study on NO Emission Behavior through Preferential Diffusion of $H_2$ and H in $CH_4-H_2$ Laminar Diffusion Flames (메탄-수소 층류확산화염에서 $H_2$와 H의 선호확산이 NO 거동에 미치는 영향에 관한 연구)

  • Park, Jeong;Kwon, Oh-Boong;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.265-274
    • /
    • 2007
  • A study has been conducted to clarify NO emission behavior through preferential diffusion effects of $H_2$ and H in methane-hydrogen diffusion flames. A comparison is made by employing three species diffusion models. Special concerns are focused on what is the deterministic role of the preferential diffusion effects in flame structure and NO emission. The behavior of maximum flame temperatures with three species diffusion models is not explained by scalar dissipation rate but the nature of chemical kinetics. The preferential diffusion of H into reaction zone suppresses the populations of the chain carrier radicals and then flame temperature while that of $H_2$ produces the increase of flame temperature. These preferential diffusion effects of $H_2$ and H are also discussed about NO emissions through the three species diffusion models.

Facilitated Protein-DNA Binding: Theory and Monte Carlo Simulation

  • Park, Ki-Hyun;Kim, Tae-Jun;Kim, Hyo-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.971-974
    • /
    • 2012
  • The facilitated diffusion effect on protein-DNA binding is studied. A rigorous theoretical approach is presented to deal with the coupling between one-dimensional and three-dimensional diffusive motions. For a simplified model, the present approach can provide numerically exact results, which are confirmed by the lattice-based Monte Carlo simulations.

GLOBAL ASYMPTOTIC STABILITY FOR A DIFFUSION LOTKA-VOLTERRA COMPETITION SYSTEM WITH TIME DELAYS

  • Zhang, Jia-Fang;Zhang, Ping-An
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1255-1262
    • /
    • 2012
  • A type of delayed Lotka-Volterra competition reaction-diffusion system is considered. By constructing a new Lyapunov function, we prove that the unique positive steady-state solution is globally asymptotically stable when interspecies competition is weaker than intraspecies competition. Moreover, we show that the stability property does not depend on the diffusion coefficients and time delays.

Shallow P+-n Junction Formation and the Design of Boron Diffusion Simulator (박막 P+-n 접합 형성과 보론 확산 시뮬레이터 설계)

  • 김재영;이충근;김보라;홍신남
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.708-712
    • /
    • 2004
  • Shallow $p^+-n$ junctions were formed by ion implantation and dual-step annealing processes. The dopant implantation was performed into the crystalline substrates using BF$_2$ ions. The annealing was performed with a rapid thermal processor and a furnace. FA+RTA annealing sequence exhibited better junction characteristics than RTA+FA thermal cycle from the viewpoint of junction depth and sheet resistance. A new simulator is designed to model boron diffusion in silicon. The model which is used in this simulator takes into account nonequilibrium diffusion, reactions of point defects, and defect-dopant pairs considering their charge states, and the dopant inactivation by introducing a boron clustering reaction. Using initial conditions and boundary conditions, coupled diffusion equations are solved successfully. The simulator reproduced experimental data successfully.

Role of Diffusion in the Kinetics of Reversible Enzyme-catalyzed Reactions

  • Szabo, Attila;Zhou, Huan-Xiang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.925-928
    • /
    • 2012
  • The accurate expression for the steady-state velocity of an irreversible enzyme-catalyzed reaction obtained by Shin and co-workers (J. Chem. Phys. 2001, 115, 1455) is generalized to allow for the rebinding of the product. The amplitude of the power-law ($t^{-1/2}$) relaxation of the free- and bound-enzyme concentrations to steady-state values is expressed in terms of the steady-state velocity and the intrinsic (chemical) rate constants. This result is conjectured to be exact, even though our expression for the steady-state velocity in terms of microscopic parameters is only approximate.

Comparison of Alternate Approaches for Reversible Geminate Recombination

  • Khokhlova, Svetlana S.;Agmon, Noam
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1020-1028
    • /
    • 2012
  • This work compares various models for geminate reversible diffusion influenced reactions. The commonly utilized contact reactivity model (an extension of the Collins-Kimball radiation boundary condition) is augmented here by a volume reactivity model, which extends the celebrated Feynman-Kac equation for irreversible depletion within a reaction sphere. We obtain the exact analytic solution in Laplace space for an initially bound pair, which can dissociate, diffuse or undergo "sticky" recombination. We show that the same expression for the binding probability holds also for "mixed" reaction products. Two different derivations are pursued, yielding seemingly different expressions, which nevertheless coincide numerically. These binding probabilities and their Laplace transforms are compared graphically with those from the contact reactivity model and a previously suggested coarse grained approximation. Mathematically, all these Laplace transforms conform to a single generic equation, in which different reactionless Green's functions, g(s), are incorporated. In most of parameter space the sensitivity to g(s) is not large, so that the binding probabilities for the volume and contact reactivity models are rather similar.

A Study on the Model of Sulfidation Kinetics Using Seashell Wastes (패각 폐기물을 이용한 황화반응 모델에 관한 연구)

  • Kim Young-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.395-401
    • /
    • 2004
  • In this study, lots of methods have been studing to utilize energy and decrease contaminated effluents. There has been great progress on IGCC (Integrated gasification combined cycle) to reduce thermal energy losses. The following results have been conducted from desulfurization experiments using waste shell to remove $H_{2}S$. Unreacted core model ior desulfuriration rate prediction of sorbent was indicated. These were linear relationship between time and conversion. So co-current diffusion resistance was conducted reaction rate controlling step. The sulfidation rate is likely to be controlled primarily by countercurrent diffusion through the product layer of calcium sulfide(CaS) formed. Maximum desulfurization capacity was observed at 0.631 mm for lime, oyster and hard-shelled mussel. The kinetics of the sorption of $H_{2}S$ by CaO is sensitive to the reaction temperature and particle size at $800^{\circ}C$, and the reaction rate of oyster was faster than the calcined limestone at $700^{\circ}C$.

ABSOLUTELY STABLE EXPLICIT SCHEMES FOR REACTION SYSTEMS

  • Lee, Chang-Ock;Leem, Chae-Hun;Park, Eun-Hee;Youm, Jae-Boum
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.165-187
    • /
    • 2010
  • We introduce two numerical schemes for solving a system of ordinary differential equations which characterizes several kinds of linear reactions and diffusion from biochemistry, physiology, etc. The methods consist of sequential applications of the simple exact solver for a reversible reaction. We prove absolute stability and convergence of the proposed explicit methods. One is of first order and the other is of second order. Numerical results are included.

Removal Characterics of $SO_x$ by CuO Impregnated ${\gamma}-Alumina$ (${\gamma}-Alumina$에 담지된 산화구리에 의한 $SO_x$가스의 제거 특성)

  • 이창선;윤용수
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.3
    • /
    • pp.29-35
    • /
    • 1996
  • Numerical solutions were obtained to the model equations for various parameters characterizing the pore structure, effective internal diffusion and the chemical reaction constant. The conversion was decreased with the cause of pore closure at the surface of reacting particles, reduction of porosity, surface area of reaction and effective diffusion coefficient in the solid with the progress of reaction. Total conversion was strongly depend on the local conversion at surface. According to the decreasing of impregnated concentration of the copper oxide and the increase of the flue gases concentration, total conversion was increased. And the conversion were affected by gas flow rate and pore size distribution of the reacting solid.

  • PDF

THERMAL IGNITION OF A REACTION DIFFUSION SYSTEMS IN SOME CLASS A GEOMETRIES WITH DIFFERENT THERMAL BOUNDARY CONDITIONS

  • Ajadi, S.O.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.3
    • /
    • pp.7-20
    • /
    • 2007
  • We examined the steady state solution for a strongly exothermic mixtures in some class A geometries subjected to different boundary conditions under Arrhenius, Bimolecular and Sensitised reactions. The solution of the governing nonlinear reaction diffusion equation was obtained using the variational method formulation executed in Mathematica package. The paper elucidates the influence of geometry, boundary conditions and types of reaction on the thermal ignition of the reactive mixture. Apart from validating known results in literature, the solution gave further insight into the influence of material properties and conditions on the occurrence of thermal ignition.

  • PDF