• Title/Summary/Keyword: re-encryption

Search Result 80, Processing Time 0.021 seconds

A Single Re-encryption key based Conditional Proxy Re-Encryption Scheme (조건값의 개수에 독립적인 조건부 프록시 재암호화 기법)

  • Son, Junggab;Oh, Heekuck;Kim, SangJin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.2
    • /
    • pp.147-155
    • /
    • 2013
  • Proxy re-encryption scheme has advantage where plaintext does not get exposed during re-encryption process. This scheme is popular for sharing server-saved data in case of cloud computing or mobile office that uses server to save data. Since previous proxy re-encryption schemes can use re-encryption key over and over again, it may abuse re-encryption. To solve this problem, conditional proxy re-encryption scheme was proposed. But, it is computationally expensive generate the same number of re-encryption key with the number of condition values. In this paper, we propose an efficient conditional proxy re-encryption scheme in terms of re-encryption key generation. The proposed scheme uses only encryption and decryption process. Therefore it has advantage to generate one re-encryption key for one person. The proposed scheme is secure against chosen-ciphertext attack.

Efficient Certificate-Based Proxy Re-encryption Scheme for Data Sharing in Public Clouds

  • Lu, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2703-2718
    • /
    • 2015
  • Nowadays, public cloud storage is gaining popularity and a growing number of users are beginning to use the public cloud storage for online data storing and sharing. However, how the encrypted data stored in public clouds can be effectively shared becomes a new challenge. Proxy re-encryption is a public-key primitive that can delegate the decryption right from one user to another. In a proxy re-encryption system, a semi-trusted proxy authorized by a data owner is allowed to transform an encrypted data under the data owner's public key into a re-encrypted data under an authorized recipient's public key without seeing the underlying plaintext. Hence, the paradigm of proxy re-encryption provides a promising solution to effectively share encrypted data. In this paper, we propose a new certificate-based proxy re-encryption scheme for encrypted data sharing in public clouds. In the random oracle model, we formally prove that the proposed scheme achieves chosen-ciphertext security. The simulation results show that it is more efficient than the previous certificate-based proxy re-encryption schemes.

Attribute-based Proxy Re-encryption with a Constant Number of Pairing Operations

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.53-60
    • /
    • 2012
  • Attribute-based encryption (ABE) is an encryption scheme in which the user is able to decrypt a ciphertext with associated attributes. However, the scheme does not offer the capability of decryption to others when the user is offline. For this reason, the attribute-based proxy re-encryption (ABPRE) scheme was proposed, which combines traditional proxy re-encryption with ABE, so a user is able to empower designated users to decrypt the re-encrypted ciphertext with the associated attributes of designated users. However, previous ABPRE schemes demands a number of pairing operations that imply huge computational overhead. To reduce the number of pairing operations, we reduce the pairing operations with exponent operations. This paper provides a novel approach to an ABPRE scheme with constant pairing operation latency.

Efficient and Secure Certificateless Proxy Re-Encryption

  • Liu, Ya;Wang, Hongbing;Wang, Chunlu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2254-2275
    • /
    • 2017
  • In this paper, we present an IND-CCA2 secure certificateless proxy re-encryption scheme in the random oracle model. A certificateless public key cryptography simplifies the certificate management in a traditional public key infrastructure and the built-in key escrow feature in an identity-based public key cryptography. Our scheme shares the merits of certificateless public key encryption cryptosystems and proxy re-encryption cryptosystems. Our certificateless proxy re-encryption scheme has several practical and useful properties - namely, multi-use, unidirectionality, non-interactivity, non-transitivity and so on. The security of our scheme bases on the standard bilinear Diffie-Hellman and the decisional Bilinear Diffie-Hellman assumptions.

Secure Data Management based on Proxy Re-Encryption in Mobile Cloud Environment (모바일 클라우드 환경에서 안전한 프록시 재암호화 기반의 데이터 관리 방식)

  • Song, You-Jin;Do, Jeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.288-299
    • /
    • 2012
  • To ensure data confidentiality and fine-grained access control in business environment, system model using KP-ABE(Key Policy-Attribute Based Encryption) and PRE(Proxy Re-Encryption) has been proposed recently. However, in previous study, data confidentiality has been effected by decryption right concentrated on cloud server. Also, Yu's work does not consider a access privilege management, so existing work become dangerous to collusion attack between malicious user and cloud server. To resolve this problem, we propose secure system model against collusion attack through dividing data file into header which is sent to privilege manager group and body which is sent to cloud server and prevent modification attack for proxy re-encryption key using d Secret Sharing, We construct protocol model in medical environment.

ID-Based Proxy Re-encryption Scheme with Chosen-Ciphertext Security (CCA 안전성을 제공하는 ID기반 프락시 재암호화 기법)

  • Koo, Woo-Kwon;Hwang, Jung-Yeon;Kim, Hyoung-Joong;Lee, Dong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.1
    • /
    • pp.64-77
    • /
    • 2009
  • A proxy re-encryption scheme allows Alice to temporarily delegate the decryption rights to Bob via a proxy. Alice gives the proxy a re-encryption key so that the proxy can convert a ciphertext for Alice into the ciphertext for Bob. Recently, ID-based proxy re-encryption schemes are receiving considerable attention for a variety of applications such as distributed storage, DRM, and email-forwarding system. And a non-interactive identity-based proxy re-encryption scheme was proposed for achieving CCA-security by Green and Ateniese. In the paper, we show that the identity-based proxy re-encryption scheme is unfortunately vulnerable to a collusion attack. The collusion of a proxy and a malicious user enables two parties to derive other honest users' private keys and thereby decrypt ciphertexts intended for only the honest user. To solve this problem, we propose two ID-based proxy re-encryption scheme schemes, which are proved secure under CPA and CCA in the random oracle model. For achieving CCA-security, we present self-authentication tag based on short signature. Important features of proposed scheme is that ciphertext structure is preserved after the ciphertext is re-encrypted. Therefore it does not lead to ciphertext expansion. And there is no limitation on the number of re-encryption.

Certificateless Proxy Re-Encryption Scheme and Its Extension to Multiple KGC Environment (무인증서기반 프락시 재암호화 기법 및 다중 KGC 환경으로의 확장)

  • Sur, Chul;Jung, Chae-Duk;Park, Young-Ho;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.4
    • /
    • pp.530-539
    • /
    • 2009
  • In this paper we introduce the notion of certificateless proxy re-encryption which enjoys the advantages of certificateless cryptography while providing the functionalities of proxy re-encryption. We give precise definitions for secure certificateless proxy re-encryption schemes and also present a concrete scheme from bilinear pairing. Our scheme is unidirectional and compatible with current certificateless encryption deployments, In addition, we show that our scheme has chosen ciphertext security in the random oracle model. Finally, we extend the proposed scheme for appling multiple KGC environment.

  • PDF

Identity Based Proxy Re-encryption Scheme under LWE

  • Yin, Wei;Wen, Qiaoyan;Li, Wenmin;Zhang, Hua;Jin, Zheng Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6116-6132
    • /
    • 2017
  • The proxy re-encryption allows an intermediate proxy to convert a ciphertext for Alice into a ciphertext for Bob without seeing the original message and leaking out relevant information. Unlike many prior identity based proxy re-encryption schemes which are based on the number theoretic assumptions such as large integer factorization and discrete logarithm problem. In this paper, we first propose a novel identity based proxy re-encryption scheme which is based on the hardness of standard Learning With Error(LWE) problem and is CPA secure in the standard model. This scheme can be reduced to the worst-case lattice hard problem that is able to resist attacks from quantum algorithm. The key step in our construction is that the challenger how to answer the private query under a known trapdoor matrix. Our scheme enjoys properties of the non-interactivity, unidirectionality, anonymous and so on. In this paper, we utilize primitives include G-trapdoor for lattice and sample algorithms to realize simple and efficient re-encryption.

A Secure Index Management Scheme for Providing Data Sharing in Cloud Storage

  • Lee, Sun-Ho;Lee, Im-Yeong
    • Journal of Information Processing Systems
    • /
    • v.9 no.2
    • /
    • pp.287-300
    • /
    • 2013
  • Cloud storage is provided as a service in order to keep pace with the increasing use of digital information. It can be used to store data via networks and various devices and is easy to access. Unlike existing removable storage, many users can use cloud storage because it has no storage capacity limit and does not require a storage medium. Cloud storage reliability has become a topic of importance, as many users employ it for saving great volumes of data. For protection against unethical administrators and attackers, a variety of cryptography systems, such as searchable encryption and proxy re-encryption, are being applied to cloud storage systems. However, the existing searchable encryption technology is inconvenient to use in a cloud storage environment where users upload their data. This is because this data is shared with others, as necessary, and the users with whom the data is shared change frequently. In this paper, we propose a searchable re-encryption scheme in which a user can safely share data with others by generating a searchable encryption index and then re-encrypt it.

Efficient Proxy Re-encryption Scheme for E-Voting System

  • Li, Wenchao;Xiong, Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1847-1870
    • /
    • 2021
  • With the development of information and communication technologies, especially wireless networks and cell phones, the e-voting system becomes popular as its cost-effectiveness, swiftness, scalability, and ecological sustainability. However, the current e-voting schemes are faced with the problem of privacy leakage and further cause worse vote-buying and voter-coercion problems. Moreover, in large-scale voting, some previous e-voting system encryption scheme with pairing operation also brings huge overhead pressure to the voting system. Thus, it is a vital problem to design a protocol that can protect voter privacy and simultaneously has high efficiency to guarantee the effective implementation of e-voting. To address these problems, our paper proposes an efficient unidirectional proxy re-encryption scheme that provides the re-encryption of vote content and the verification of users' identity. This function can be exactly applied in the e-voting system to protect the content of vote and preserve the privacy of the voter. Our proposal is proven to be CCA secure and collusion resistant. The detailed analysis also shows that our scheme achieves higher efficiency in computation cost and ciphertext size than the schemes in related fields.