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Abstract 
 

Nowadays, public cloud storage is gaining popularity and a growing number of users are 
beginning to use the public cloud storage for online data storing and sharing. However, how 
the encrypted data stored in public clouds can be effectively shared becomes a new challenge. 
Proxy re-encryption is a public-key primitive that can delegate the decryption right from one 
user to another. In a proxy re-encryption system, a semi-trusted proxy authorized by a data 
owner is allowed to transform an encrypted data under the data owner’s public key into a 
re-encrypted data under an authorized recipient’s public key without seeing the underlying 
plaintext. Hence, the paradigm of proxy re-encryption provides a promising solution to 
effectively share encrypted data. In this paper, we propose a new certificate-based proxy 
re-encryption scheme for encrypted data sharing in public clouds. In the random oracle model, 
we formally prove that the proposed scheme achieves chosen-ciphertext security. The 
simulation results show that it is more efficient than the previous certificate-based proxy 
re-encryption schemes. 
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1. Introduction 

Cloud computing has increasingly become a technology trend due to its key properties, such 
as cost saving and on-demand provisioning. There is an emerging trend that increasingly more 
users are beginning to use the public cloud storage for online data storing and sharing. 
However, many users still hesitate to move their data into a cloud, since they worry about their 
sensitive information being leaked by a cloud service provider (CSP). To preserve the 
confidentiality of the data stored at a cloud storage server, one can encrypt the data before 
sending it to the server. However, traditional encryption paradigm makes it difficult for 
flexibly sharing encrypted data between different users. For data sharing, there are two ways 
for a data owner to choose under the traditional encryption paradigm: he encrypts all data with 
a single symmetric key and gives his friends the symmetric key directly; or he downloads the 
encrypted data from the cloud storage, decrypts them, re-encrypts them using a new 
symmetric key and re-uploads the re-encrypted data along with the new symmetric key 
encrypted under his friend’s public key to cloud. Obviously, the first way violates the least 
privilege principle since all data are leaked to his friends. For the second way, there are 
practical concerns on efficiency. Because the data owner has to re-encrypt the data and then 
re-upload to cloud, it brings heavy computation load and bandwidth cost to the data owner. In 
addition, the second way also loses the value of cloud storage.  

How the encrypted data can be effectively shared in clouds has become a challenge. So far, 
a variety of methods (e.g. [1-10]) have been introduced in an attempt to deal with this problem. 
Among these approaches, proxy re-encryption (PRE) provides a promising solution for 
encrypted-data sharing in public clouds. The notion of PRE was introduced by Blaze et al. [11] 
in Eurocrypt’98. Its goal is to securely delegate the decryption right from one user (the 
delegator) to another (the delegate) without relying on trusted third parties. In a PRE scheme, 
a semi-trusted proxy authorized by the delegator is allowed to transform a ciphertext under the 
delegator’s public key into a new ciphertext under the delegate’s public key without seeing the 
underlying plaintext. More concretely, this cryptographic system works as follows: The 
delegator generates a proxy re-encryption key and sets it in a proxy. On receiving the 
ciphertexts under the delegator’s public key, the proxy transforms them into the ciphertexts 
under the delegate’s public key using the re-encryption key. Then, the delegate can decrypt the 
re-encrypted ciphertexts by using its private key directly. PRE can serve as a fundamental 
cryptographic building block for constructing secure data sharing applications in cloud 
systems. With a PRE system, a data owner is able to delegate the access rights of the sharing 
data to others so that they can access these data from the cloud storage directly. Furthermore, 
PRE introduces minor overhead on cloud users by eliminating any direct interaction between a 
data owner and its recipients.  

Since its advent, PRE has attracted much attention in the research community and a 
number of schemes have been proposed. However, most of previous PRE schemes were 
constructed under either traditional public-key encryption (PKE) (e.g. [12-16]) or 
identity-based encryption (IBE) (e.g. [17-20]). It is well recognized that traditional PKE 
suffers from the cumbersome certificate management problem and IBE has inherent key 
escrow and distribution problems. To solve the key escrow problem in identity-based PRE, Xu 
et al. [3] proposed the notion of certificateless PRE by extending PRE into certificateless 
public-key cryptography (CL-PKC) that was presented by Al-Riyami and Paterson in 
Asiacrypt’03 [21]. However, CL-PKC needs a secure communication channel to distribute a 
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partial private key to each user. Therefore, certificateless PRE inevitably suffers from the key 
distribution problem similar to identity-based PRE. This feature limits the application of 
certificateless PRE in public clouds. 

To address the problems imposed on the previous approaches, Sur et al. [4] introduced the 
notion of certificate-based PRE (CB-PRE) that follows the idea of certificate-based encryption 
(CBE) presented by Gentry [22] in Eurocrypt’03. CBE is a public-key encryption primitive 
that has attracted great interest in the recent years [23-30]. This primitive combines traditional 
PKE with IBE while preserving some of their most attractive features. As in traditional PKE, 
each user in CBE generates a pair of public key and private key independently and then 
requests a certificate from a CA. The difference is that a certificate is pushed only to its owner 
and acts as a partial decryption key. This additional functionality provides an efficient implicit 
certificate mechanism so that a user needs both his private key and certificate to perform 
decryption operations, while the other parties need not obtain the fresh information on this 
user’s certificate status. The feature of implicit certificate makes CBE eliminate third-party 
queries for the certificate status and simplify the public key revocation problem in traditional 
PKE. Furthermore, there are no key escrow problem (since CA does not know users’ private 
keys) and key distribution problem (since the certificates can be sent to their owners publicly) 
in CBE. To the best of our knowledge, two CB-PRE schemes have been proposed in the 
literature so far. In [4], Sur et al. provided a formal security model for CB-PRE schemes and 
proposed the first CB-PRE scheme that is provably secure in the random oracle model [31]. In 
[32], Li et al. proposed another CB-PRE scheme in the random oracle model. However, both 
of these two CB-PRE schemes are inefficient due to many costly pairing operations. For 
example, to re-encrypt a ciphertext, Sur et al.’s scheme [4] requires computing seven pairings 
while Li et al.’s scheme [32] requires computing five pairings.  

The contribution of this paper is that we develop an efficient CB-PRE scheme with bilinear 
pairings. The proposed scheme requires computing at most two bilinear pairings in each 
operation. Compared with the previous CB-PRE schemes, it has obviously advantage in both 
the computation efficiency and the communication bandwidth. In the random oracle model, 
we strictly prove that the proposed scheme is chosen-ciphertext secure under the hardness of 
the bilinear Diffie-Hellman problem. 

2. Preliminaries 

2.1 Bilinear Map and Complexity Assumption 
Let k be a security parameter and p be a k-bit prime number. Let G and GT be two cyclic groups 
of prime order p and P be a generator of the group G.  

A bilinear pairing is a map e: G × G → GT that takes two elements U and V in the group G 
as input and outputs an element e(U, V) in the group GT. It satisfies the following three 
properties:  

(1) Bilinearity: For all U, V ∈ G and all *, pa b Z∈ , e(Ua, Vb) = e(U, V)ab;  

(2) Non-degeneracy: e(P, P) ≠ 1;  
(3) Computability: For all U, V ∈ G, e(U, V) can be efficiently computed. 
The security of our CB-PRE scheme is based on the following complexity assumption. 
Definition 1 [33]. The bilinear Diffie-Hellman (BDH) problem in (G, GT) is, given a tuple 

(P, aP, bP, cP) ∈ G4 for unknown *, , pa b c Z∈ , to compute e(P, P)abc ∈ GT. The advantage of a 
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probabilistic polynomial time (PPT) algorithm ABDH in solving the BDH problem in (G, GT) is 
defined as 
 

Adv(ABDH) = Pr[ABDH(p, G, GT, P, aP, bP, cP) = e(P, P)abc].                      (1) 
 
The BDH assumption is that, for any PPT algorithm ABDH, the advantage Adv(ABDH) is 
negligible. 

2.2 Certificate-Based Proxy Re-Encryption 
In this paper, a CB-PRE scheme is composed of eight algorithms: (1) System setup algorithm 
Setup, which is performed by a CA to generate a master secret key and a list of public system 
parameters; (2) User key generation algorithm UserKeyGen, which is performed by the users 
to generate their private key and public key pairs; (3) Certificate generation algorithm Certify, 
which is performed by a CA to generate a certificate for each user in the system; (4) 
Encryption algorithm Encrypt, which is performed by the delegators to encrypt their data to 
generate the original ciphertexts; (5) Re-encryption key generation algorithm ReKeyGen, 
which is performed by the delegators to generate the re-encryption keys; (6) Re-encryption 
algorithm ReEncrypt, which is performed by a proxy to re-encrypt the original ciphertexts; (7) 
Normal decryption algorithm Decrypt1, which is performed by the delegators to decrypt the 
original ciphertexts; (8) Re-encrypted ciphertext decryption algorithm Decrypt2, which is 
performed by the delegates to decrypt the re-encrypted ciphertexts. 

A more concrete functional description of a CB-PRE scheme is as follows: 
 

(1) Setup(k) → (msk, params) 
   Input: a security parameter k ∈ Z+ 
   Output: a master secret key msk and a list of public system parameters params 

(2) UserKeyGen(params) → (SKU, PKU) 
   Input: params 
   Output: a private key SKU and a public key PKU for a user U with identity idU 

(3) Certify(params, msk, idU, PKU) → CertU 
   Input: params, msk, a user U’s identity idU  and public key PKU 
   Output: a certificate CertU 

(4) Encrypt(params, M, idA, PKA) → CA 
       Input: params, a message M, a delegator A’s identity idA and public key PKA 

   Output: an original ciphertext CA  
(5) ReKeyGen(params, idA, SKA, CertA, idB, PKB) → RKA→B 
       Input: params, a delegator A’s identity idA, private key SKA and certificate CertA and a delegate 

B’s identity idB and public key PKB 
   Output: a re-encryption key RKA→B 

(6) ReEncrypt(params, CA, RKA→B)  → CB 
   Input: params, a ciphertext CA and a re-encryption key RKA→B 
   Output: a re-encrypt ciphertext CB under a delegate B’s identity idB and public key PKB 

(7) Dencrypt1(params, CA, idA, SKA, CertA) → M 
   Input: params, an original ciphertext CA, a delegator A’s identity idA, private key SKA and 

certificate CertA 
       Output: a message M or an error symbol ⊥ if the decryption fails 
(8) Dencrypt2(params, CB, idB, SKB, CertB, idA, PKA) → M 

   Input: params, a re-encrypted ciphertext CB, a delegate B’s identity idB, private key SKB and 
certificate CertB and a delegator A’s identity idA and public key PKA 

       Output: a message M or an error symbol ⊥ if the decryption fails 
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In the above algorithms UserKeyGen and Certify, a user U may be a delegator A or a 

delegate B.  
For correctness, it is required that, for any message M and any identity idA and idB, the 

following two equations should hold: Decrypt1(params, Encrypt(params, M, idA, PKA), SKA, 
CertA) = M, Decrypt2(params, ReEncrypt(params, Encrypt(params, M, idA, PKA), RKA→B), 
idB, SKB, CertB, idA, PKA) = M. 

As introduced by Sur et al. in [4], the security model of CB-PRE schemes is an extension 
of the model of CBE schemes in which there are two kinds of adversaries, namely Type-I 
adversary (denoted by AI) and Type-II adversary (denoted by AII). The Type-I adversary 
models an uncertified entity while the Type-II adversary models a malicious CA who knows 
the master secret key. To formalize the security notions for CB-PRE schemes, we first 
describe the following six oracles. A Type-I or Type-II adversary can adaptively make 
requests to some of these oracles. We assume that the challenger keeps a history of 
“query-answer” when interacting with the adversary. 

(1) OUserCreate(idU): On input an identity idU, the challenger responds with the public 
key PKU associated with the identity idU. If the identity idU has not been created, then the 
challenger generates a public key PKU and a private key SKU respectively and returns PKU. 
In this case, the identity idU is said to be created. Note that other oracles defined below only 
respond to an identity which has been created. 

(2) OCorrupt(idU): On input an identity idU, the challenger outputs the private key SKU 
associated with the identity idU. 

(3) OCertificate(idU): On input an identity idU, the challenger responds with a certificate 
CertU. Note that such an oracle is only queried by the Type-I adversary since the Type-II 
adversary can generate any user’s certificate by itself. 

(4) OReKeyGen(idA, idB): On input two identities idA and idB, the challenger responds with a 
re-encryption key RKA→B. 

(5) OReEncrypt(idA, idB, CA): On input two identities idA, idB and a ciphertext CA under the 
identity idA and the public key PKA, the challenger responds with a transformed ciphertext CB 
under the identity idB and the public key PKB. 

(6) ODecrypt(idU, CU): On input an identity idU and a ciphertext CU, the challenger responds 
with the decryption of the ciphertext CU. 

The chosen-ciphertext security of CB-PRE schemes can be formally defined by the 
following adversarial game “IND-CBPRE-CCA2 Game”, in which a Type-I or Type-II 
adversary AX ∈ {AI, AII} interacts with a challenger.  

Setup. On input a security parameter k, the challenger runs the algorithm Setup(k) to 
generate a master secret key msk and a list of public parameters params. It then sends params 
to the adversary AX. If AX is a Type-II adversary, the challenger also sends the master secret 
key msk to it. 

Phase 1. In this phase, the adversary AX can adaptively query the oracles OCreateUser, OCorrupt, 
OCertificate, OReKeyGen, OReEncrypt and ODecrypt if it is a Type-I adversary or the oracles OCreateUser, 
OPrivateKey, OReKeyGen, OReEncrypt and ODecrypt if it is a Type-II adversary. The challenger responds 
as described above. 

Challenge. Once the adversary AX decides that Phase 1 is over, it outputs an identity idch 
and two equal-length messages (M0, M1) on which it wants to be challenged. The challenger 
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picks a random bit b∈{0,1}, computes Cch = Encrypt(params, Mb, idch, PKch), and then outputs 
Cch as the challenge ciphertext to the adversary AX. 

Phase 2. In this phase, the adversary AX issues a second sequence of queries as in Phase 1. 
Guess. After all queries, the adversary AX outputs a guess {0,1}b′∈ for the bit b. We say that 

the adversary AX wins the game if b b′= and the following restrictions are simultaneously 
satisfied: (1) (idch, Cch) and its derivatives cannot be submitted to the oracle ODecrypt; (2) idch

 

cannot be submitted to the oracle OCertificate if AX is a Type-I adversary or the oracle OPrivateKey if 
AX is a Type-II adversary. The advantage of the adversary AX is defined to be 
 

Adv(AX) = 2|Pr[ b b′= ] - 1/2|.                                              (2) 
    

For our definition to make sense, we consider the notion of derivative of the challenge 
ciphertext [13]. 

Definition 2. Assume that idch is the challenge identity and Cch is the challenge ciphertext 
in the above games, (idU, CU) is said to be a derivative of (idch, Cch) if either (1) the adversary 
AX has queried the oracle OReEncrypt on (idch, idU, Cch) to get a new ciphertext CU, or (2) the 
adversary AX has queried the oracle OReKeyGen(idch, idU) to get the re-encryption key RKch→U and 
CU is the result of ReEncrypt(params, Cch, RKch→U).  

It is clear that in the above game we should disallow the queries to ODecrypt not only on the 
challenge ciphertext (idch, Cch) as usual, but also on any derivative of (idch, Cch). Otherwise, the 
adversary AX can easily win the game by making a query to OReEncrypt or OReKeyGen corresponding 
to (idch, Cch). 

Definition 3. A CB-PRE scheme is said to be secure against adaptive chosen-ciphertext 
attacks (or IND-CBPRE-CCA2 secure) if no PPT adversary has non-negligible advantage in 
the above game. 

3. Description of the Proposed CB-PRE Scheme 

Motivated by Green and Ateniese’s identity-based PRE scheme [17], we propose a new 
CB-PRE scheme. The proposed scheme consists of the following eight algorithms: 

(1) Setup(k). The CA chooses a k-bit prime number p, generates two cyclic groups G and 
GT of order p such that there exists a bilinear paring map e: G × G → GT. It randomly chooses 
a generator P ∈ G and a master secret key *

ps Z∈ , and sets Ppub = Ps. Additionally, it selects 

five cryptographic hash functions H1: {0,1}* × G → G, H2: {0,1}n × GT × {0,1}* × G → *
pZ , H3: 

{0,1}* × G × G → G, H4: GT → {0,1}n and H5: {0,1}* × {0,1}* × GT × G → G, where n is the 
bit-length of the message to be encrypted. The public system parameters are params = {p, G, 
GT, e, n, P, Ppub, H1, H2, H3, H4, H5} and the master secret key is msk = s. 

(2) UserKeyGen(params). A user U with identity idU chooses a random value *
U px Z∈ as his 

private key SKU and computes his public key PKU = UxP .  
(3) Certify(params, msk, idU, PKU). The CA computes CertU = s

UQ as a certificate for a user 
U with identity idU and public key PKU, where QU = H1(idU, PKU). The user U can check the 
validness of CertU by verifying whether e(P, CertU) = e(Ppub, QU). 
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(4) Encrypt(params, M, idA, PKA). To encrypt a message M ∈ {0,1}n, the delegator A 
randomly chooses σ ∈ GT, sets r = H2(M, σ, idA, PKA), and then computes an original 
ciphertext CA = (UA, VA, WA) = (Pr, σ ⋅ e(Ppub, QA)-r ⋅ e(PKA, RA)-r, M ⊕ H4(σ)), where QA = 
H1(idA, PKA) and RA = H3(idA, PKA, Ppub).  

The algorithm Encrypt does not require any paring computations once e(Ppub, QA) and 
e(PKA, RA) have been pre-computed.  

(5) ReKeyGen(params, idA, SKA, CertA, idB, PKB). To generate a proxy re-encryption key 
RKA→B, the delegator A computes K1 = e(CertA, QB), K2 = ( ) ASK

BPK and K3 = ( ) ASK
A AR Cert⋅ , 

and then sets RKA→B = H5(idA, idB, K1, K2) ⋅ K3, where QB = H1(idB, PKB) and RA = H3(idA, PKA, 
Ppub). 

(6) ReEncrypt(params, C, RKA→B). To convert an original ciphertext CA = (UA, VA, WA) 
under identity idA and public key PKA into a re-encrypted ciphertext CB under identity idB and 
public key PKB using the proxy re-encryption key RKA→B, the proxy sets UB = UA and WB = WA 
respectively, computes VB = VA ⋅ e(UA, RKA→B) and then sets CB = (UB, VB, WB).  

(7) Decrypt1(params, CA, idA, SKA, CertA). To decrypt an original ciphertext CA = (UA, VA, 
WA), the delegator A first computesσ ′= VA ⋅ e(UA, ( ) ASK

A AR Cert⋅ ) and M ′= WA ⊕ 4 ( )H σ ′ , 
where RA = H3(idA, PKA, Ppub). It then checks whether UA = rP ′ where r′= H2( M ′ ,σ ′ , idA, PKA). 
If this check holds, it outputs M ′ , otherwise outputs ⊥. 

(8) Decrypt2(params, CB, idB, SKB, CertB, idA, PKA). To decrypt a re-encrypted ciphertext 
CB = (UB, VB, WB) from a delegator A with identity idA and public key PKA, the delegate B first 
computesσ ′= VB ⋅ e(UB, H5(idA, idB, e(QA, CertB), ( ) BSK

APK )-1) and M ′= WB ⊕ 4 ( )H σ ′ , where 
QA = H1(idA, PKA). It then checks whether UB = rP ′ where r′= H2( M ′ ,σ ′ , idA, PKA). If this 
check holds, it outputs M ′ , otherwise outputs ⊥. 

4. Analysis of the Proposed CB-PRE Scheme 
4.1 Correctness 
The correctness of the proposed CB-PRE scheme can be verified as follows: 

If CA is an original ciphertext, i.e., CA = (UA, VA, WA), then we have 
σ ′= VA ⋅ e(UA, ( ) ASK

A AR Cert⋅ ) 
= σ ⋅ e(Ppub, QA)-r ⋅ e(PKA, RA)-r ⋅ e(Pr, ( ) ASK

AR ) ⋅ e(Pr, CertA)  
= σ ⋅ e(Pα, QA)-r ⋅ e( ASKP , RA)-r ⋅ e(Pr, ( ) ASK

AR ) ⋅ e(Pr, AQα )  
= σ. 

If CB is a re-encrypted ciphertext from a delegator A with identity idA and public key PKA, 
i.e., CB = (UB, VB, WB) = (UA, VA ⋅ e(UA, RKA→B), WA), then we have 

σ ′= VB ⋅ e(UA, H5(idA, idB, e(QA, CertB), ( ) BSK
APK )-1) 

= VA ⋅ e(UA, H5(idA, idB, e(CertA, QB), ( ) ASK
BPK )) ⋅ ( ) ASK

AR ⋅ CertA) 
 ⋅ e(UA, H5(idA, idB, e(QA, CertB), ( ) BSK

APK )-1) 
= VA ⋅ e(UA, ( ) ASK

AR ) ⋅ e(UA, CertA) 
= σ ⋅ e(Ppub, QA)-r ⋅ e(PKA, RA)-r ⋅ e(Pr, ( ) ASK

AR ) ⋅ e(Pr, AQα ) 
= σ ⋅ e(Pα, QA)-r ⋅ e( ASKP , RA)-r ⋅ e(Pr, ( ) ASK

AR ) ⋅ e(Pr, AQα ) 
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= σ. 
Hence, the normal decryption and the re-encrypted ciphertext decryption are both correct. 

4.2 Security Proof 
Theorem 1. In the random oracle model, our CB-PRE scheme is IND-CBPRE-CCA2 secure 
under the BDH assumption. 

This theorem can be proved by combining the following Lemma 1 and Lemma 2. 
Lemma 1. Assume that a Type-I adversary AI has an advantage ε against our CB-PRE 

scheme when asking at most quc queries to the oracle OUserCreate, qcr queries to the oracle OCorrupt, 
qcer queries to the oracle OCertificate, qrk queries to the oracle OReKeyGen, qren queries to the oracle 
OReEncrypt , qdec queries to the oracle ODecrypt and qi queries to the random oracles Hi (i = 
1,2,3,4,5) respectively, then there exists an algorithm ABDH to solve the BDH problem with 
advantage 
 

1 4

(1 )(1 )
2 2
ren dec
k k

q q
q q
εε ′ ≥ − − .                                                  (3) 

 
Proof. We show how to construct an algorithm ABDH to solve the BDH problem. Assume 

that the algorithm ABDH is given a random instance (P, Pa, Pb, Pc) of the BDH problem in (G, 
GT) and asked to compute e(P, P)abc. In order to solve the given problem, ABDH needs to 
simulate a challenger and all oracles for the adversary AI. 

In the setup phase, the algorithm ABDH sets Ppub = Pa and randomly chooses an index θ ∈ 
{1,2,…,q1}. Then, it starts IND-CBPRE-CCA2 Game by supplying the adversary AI with 
params = {p, G, GT, e, n, P, Ppub, H1, H2, H3, H4, H5}, where H1 ~ H5 are random oracles 
controlled by ABDH. Note that the master key msk is the value a that is unknown to ABDH.  

Now, the algorithm ABDH starts to respond various queries as follows: 
H1 queries: We assume that the adversary AI’s queries to the random oracle H1 are distinct. 

The algorithm ABDH maintains a list H1List of tuples (idi, PKi, Qi, Certi). On receiving such a 
query on (idi, PKi), it does the following: (1) If idi already appears on the list H1List in a tuple 
(idi, PKi, Qi, Certi), then it outputs Qi to the adversary AI. (2) Else if the query is on the θ-th 
distinct identity idθ, it sets h1i = Pb, inserts a new tuple (idi, PKi, Qi, ⊥) into the list H1List and 
then returns Qi. (3) Otherwise, it randomly chooses *

i ps Z∈ , sets Qi = isP and Certi = ( ) isaP , 
inserts a new tuple (idi, PKi, Qi, Certi) into the list H1List and then returns Qi. 

H2 queries: The algorithm ABDH maintains a list H2List of tuples (M, σ, idi, PKi, r). On 
receiving such a query on (M, σ, idi, PKi), it checks whether (M, σ, idi, PKi) already appears on 
the list H2List in a tuple (M, σ, idi, PKi, r). If so, it outputs r. Otherwise, it outputs a random 
value r ∈ *

pZ  to AI and inserts a new tuple (M, σ, idi, PKi, r) into the list H2List. 

H3 queries: The algorithm ABDH maintains a list H3List of tuples (idi, PKi, ti, Ri). On 
receiving such a query on (idi, PKi, Ppub), it checks whether (idi, PKi) already appears on the list 
H3List in a tuple (idi, PKi, ti, Ri). If so, it returns Ri to AI directly. Otherwise, it randomly 
chooses *

i pt Z∈ , sets Ri = itP , inserts a new tuple (idi, PKi, ti, Ri) into H3List and returns Ri to AI. 

H4 queries: The algorithm ABDH maintains a list H4List of tuples (σ, h4). On receiving such 
a query on σ, it checks whether σ already appears on the list H4List in a tuple (σ, h4). If so, it 
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returns h4 to AI directly. Otherwise, it returns a random value h4 ∈ {0, 1}n and inserts a new 
tuple (σ, h4) into the list H4List. 

H5 queries: The algorithm ABDH maintains a list H5List of tuples (idi, idj, K1, K2, h5ij). On 
receiving such a query on (idi, idj, K1, K2), it checks whether (idi, idj, K1, K2) already appears on 
the list H5List in a tuple (idi, idj, K1, K2, h5ij). If so, it returns h5ij to AI directly. Otherwise, it 
returns a random value h5ij ∈ G and inserts a new tuple (idi, idj, K1, K2, h5ij) into the list H5List. 

OUserCreate queries: The algorithm ABDH maintains a list KeyList of tuples (idi, PKi, SKi). On 
receiving such a query on idi, it checks whether the identity idi already appears on the list 
KeyList in a tuple (idi, PKi, SKi). If so, it returns PKi to AI directly. Otherwise, it randomly 
chooses xi ∈ *

pZ as SKi, computes PKi = ixP , inserts a new tuple (idi, PKi, SKi) into the list 
KeyList and then returns PKi. 

OCorrupt queries: On receiving such a query on idi, ABDH searches idi in the list KeyList to 
find a tuple (idi, PKi, SKi) and returns SKi to AI.  

OCertificate queries: On receiving such a query on idi, ABDH aborts if idi = idθ. Otherwise, it 
searches idi in the list H1List to find a tuple (idi, PKi, Qi, Certi) and returns Certi to AI.  

OReKeyGen queries: On receiving such a query on (idi, idj), ABDH aborts if idi = idθ. Otherwise, 
it respectively retrieves the private key SKi and certificate Certi associated with the identity idi 
and the public key PKj associated with the identity idj, then computes ReKeyGen(params, idi, 
SKi, Certi, idj, PKj) and outputs the result to AI. 

 OReEncrypt queries: On receiving such a query on (idi, idj, Ci = (Ui, Vi, Wi)), ABDH does the 
following: (1) If idi = idθ, it searches in the list H2List for a tuple (M, σ, idi, PKi, r) such that Ui 
= Pr, Vi = σ ⋅ 1( , ( , ))r

pub i ie P H id PK ⋅ 3( , ( , , ))r
i i i pube PK H id PK P and Wi = M ⊕ H4(σ). The query 

is rejected if no such tuple is found. Otherwise, it sets Vj = σ ⋅ e(Ui, H5(idi, idj, e(H1(idi, PKi), 
Certj), ( ) jSK

iPK )) and returns Cj = (idi, Ui, Vj, Wi) as the re-encryption ciphertext to AI. (2) 
Otherwise, it makes a query OReKeyGen(idi, idj) to obtain a re-encryption key RKi→j and then 
returns the result of ReEncrypt(params, Ci, RKi→j) to AI. Note that a valid ciphertext submitted 
to this oracle is rejected with probability smaller than qren/2k across the whole game. 

ODecrypt queries: On receiving such a query on (idi, Ci), ABDH does the following: (1) If idi = 
idθ and Ci = (Ui, Vi, Wi) is an original ciphertext, it searches in the list H2List for a tuple (M, σ, 
idi, PKi, r) such that Ui = rP, Vi = σ ⋅ 1( , ( , ))r

pub i ie P H id PK ⋅ 3( , ( , , ))r
i i i pube PK H id PK P and Wi = 

M ⊕ H4(σ). If no such tuple is found, it rejects this query. Otherwise, it returns M in this tuple 
to AI. (2) Else if idi = idθ and Ci = (idj, Uj, Vi, Wj) is a transformed ciphertext, it queries the 
oracle OReKeyGen on (idj, idi) to obtain a re-encryption key RKj→i and computes Vj = Vi / RKj→i. It 
then searches in the list H2List for a tuple (M, σ, idj, PKj, r) such that Uj = rP, Vj = σ 
⋅ 1( , ( , ))r

pub j je P H id PK ⋅ 3( , ( , , ))r
j j j pube PK H id PK P and Wj = M ⊕ H4(σ). If no such tuple is 

found, Β rejects this query. Otherwise, it returns M in this tuple to AI. (3) Otherwise, it obtains 
SKi and Certi associated with the identity idi and then returns the result of Decrypt(params, Ci, 
SKi, Certi). Note that a valid ciphertext submitted to this oracle is rejected with probability 
smaller than qdec/2k. 

In the challenge phase, AI outputs (M0, M1, idch) on which it wants to be challenged. If idch 
≠  idθ, then ABDH aborts. Otherwise, it sets Uch = cP, randomly chooses Vch ∈ GT , Wch ∈ {0, 1}n, 
and returns Cch = (Uch, Vch, Wch) as the challenge ciphertext to AI. 
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In the guess phase, AI outputs a bit b′which is ignored by ABDH. Observe that the decryption 
of Cch is Wch ⊕ H4(Vch / e(Uch, Certch + SKchRch)) where Rch = H3(idch, PKch, Ppub).  

To produce a result, ABDH randomly picks a tuple (σ, h4) from the list H4List, retrieves the 
value tch from the tuple (idch, PKch, tch, Rch) in the list H3List and returns  
 

T = Vch / (σ ⋅ e(PKch, tchUch))                                             (4) 
 
as the solution to the given BDH problem. 

Note that if σ = Vch / e(Uch, Certch + SKchRch), then Vch = σ ⋅ e(Ppub, Qch)c ⋅ e(PKch, Rch)c, 
where Qch = H1(idch, PKch). Thus, we have  
 

T = Vch / (σ ⋅ e(PKch, tchUch)) = e(Ppub, Qch)c = e(aP, bP)c = e(P, P)abc.         (5) 
 

We now estimate ABDH’s advantage in solving the BDH problem.  
Let Fail denote the event that the above simulation fails and QueryH4 the event that AI 

makes a query H4(Vch / e(Uch, Certch + SKchRch).  From the above simulation, the event Fail 
occurs if any one of the following five events occurs: (1) E1: In the challenge phase, AI does 
not choose idθ as the challenge identity; (2) E2: AI queries the oracle OCertificate on idθ; (3) E3: AI 
queries the oracle OReKeyGen on (idθ, idj); (4) E4: ABDH rejects a valid ciphertext submitted to the 
oracle OReEncrypt; (5) E5: ABDH rejects a valid ciphertext submitted to the oracle ODecrypt. 

We clearly have that Pr[¬E1] = 1/q1 and ¬E1 implies ¬E2 and ¬E3. We also already 
observed that Pr[E4] ≤ qren/2k and Pr[E5] ≤ qdec/2k. Thus, the probability that the above 
simulation does not fail is 
 

Pr[¬Fail] = Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4 ∧ ¬E5] ≥
1

1 (1 )(1 )
2 2

− −ren dec
k k

q q
q

.          (6) 

 
Let Event be the event QueryH4 | ¬Fail. It is clear that if Event does not happen, then AI 

does not gain any advantage greater than 1/2 in guessing b. Namely, we have the probability 
Pr[ b b′= |¬Event] = 1/2. Hence, by splitting the probability Pr[ b b′= ], we obtain Pr[ b b′= ] = 
Pr[ b b′= |¬Event]⋅Pr[¬Event] + Pr[ b b′= |Event]⋅Pr[Event] ≤ Pr[¬Event]/2 + Pr[Event] = 
1/2 + Pr[Event]/2. By the definition of the advantage in IND-CBPRE-CCA2 Game, we have 
ε ≤ 2|Pr[ b b′= ] - 1/2| ≤ Pr[Event] ≤ Pr[QueryH4]/Pr[¬Fail]. Hence, we get  
 

Pr[QueryH4] ≥ εPr[¬Fail] ≥
1

(1 )(1 )
2 2
ren dec
k k

q q
q
ε

− − .                           (7) 

 
Finally, we get the announced bound on ABDH’s advantage in solving the BDH problem by 

noting that ABDH selects the correct tuple from the list H4List with probability 1/q4. 
Lemma 2. Assume that a Type-II adversary AII has an advantage ε against our CB-PRE 

scheme when asking at most quc queries to the oracle OUserCreate, qcr queries to the oracle OCorrupt, 
qrk queries to the oracle OReKeyGen, qren queries to the oracle OReEncrypt , qdec queries to the oracle 
ODecrypt and qi queries to the random oracles Hi (i = 1,2,3,4,5) respectively, then there exists an 
algorithm ABDH to solve the BDH problem with advantage 
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(1 )(1 )
2 2
ren dec
k k

uc

q q
q q
εε ′ ≥ − − .                                               (8) 

 
Proof. We show how to construct an algorithm ABDH to solve the BDH problem. Assume 

that ABDH is given a random instance (P, aP, bP, cP) of the BDH problem in (G, GT) and asked 
to compute e(P, P)abc. In order to solve the given problem, ABDH needs to simulate a challenger 
and all oracles for the adversary AII. 

In the setup phase, ABDH randomly chooses *
pZα ∈ and sets Ppub = αP. Furthermore, it 

randomly chooses an index θ ∈ {1,2,…,quc}. Then, it starts IND-CBPRE-CCA2 Game by 
supplying AII with msk = α and params = {p, G, GT, e, n, P, Ppub, H1, H2, H3, H4, H5}, where H1 
~ H5 are random oracles controlled by ABDH.  

During the query-answer phase, ABDH responds AII’s queries to the oracles H2, H4, H5, 
OReKeyGen, OReEncrypt and ODecrypt as in the proof of Lemma 1 and other queries as follows: 

H1 queries: ABDH maintains a list H1List of tuples (idi, PKi, Qi). On receiving such a query 
on (idi, PKi), ABDH checks whether (idi, PKi) already appears on the list H1List in a tuple (idi, 
PKi, Qi). If so, then it returns Qi to AII. Otherwise, it returns a random value Qi ∈ *

pZ to AII and 
inserts a new tuple (idi, PKi, Qi) into the list H1List. 

H3 queries: ABDH maintains a list H3List of tuples (idi, PKi, Ri). On receiving such a query 
on (idi, PKi, Ppub), ABDH does the following: (1) If (idi, PKi) already appears on H3List in a tuple 
(idi, PKi, Ri), it returns Ri to AII directly. (2) Else if idi = idθ, it returns Ri = bP to AII and inserts 
a new tuple (idi, PKi, Ri) into the list H3List. (3) Otherwise, it returns a random element Ri ∈ G 
to AII and inserts a new tuple (idi, PKi, Ri) into the list H3List. 

OUserCreate queries: ABDH maintains a list KeyList of tuples (idi, PKi, SKi). On receiving such 
a query on idi, ABDH does the following: (1) If idi already appears on KeyList in a tuple (idi, PKi, 
SKi), it returns PKi to AII directly. (2) Else if the query is on the θ-th distinct identity idθ, it 
returns PKθ = bP to AII and inserts (idθ, PKθ, ⊥) into the list KeyList. Note that the private key 
corresponding to PKθ is SKθ = b which is unknown to ABDH. (3) Otherwise, it randomly 
chooses xi ∈ *

pZ as SKi, computes PKi = xiP, inserts a new tuple (idi, PKi, SKi) into the list 
KeyList and then returns PKi to AII. 

In the challenge phase, AII outputs (M0, M1, idch) on which it wants to be challenged. If idch 
≠  idθ, then ABDH aborts. Otherwise, it sets Uch = cP, randomly chooses Vch ∈ GT , Wch ∈ {0, 1}n, 
and returns Cch = (Uch, Vch, Wch) as the challenge ciphertext to AII. 

In the guess phase, AII outputs a bit b′ which is ignored by ABDH. Observe that the 
decryption of Cch is Wch ⊕ H4(Vch / e(Uch, Certch + SKchRch)) where Rch = H3(idch, PKch, Ppub). 
To produce a result, ABDH randomly picks a tuple (σ, h4) from the list H4List and returns  
 

T = Vch / (σ ⋅ e(αUch, Qch))                                                 (9) 
 
as the solution to the given BDH problem, where Qch = H1(idch, PKch). 

Note that if σ = Vch / e(Uch, Certch + SKchRch), then Vch = σ ⋅ e(Ppub, Qch)c ⋅ e(PKch, Rch)c. 
Thus, we have  
 

T = Vch / (σ ⋅ e(αUch, Qch)) = e(PKch, Rch)c = e(aP, bP)c = e(P, P)abc.            (10) 
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We now estimate ABDH’s advantage in solving the BDH problem.  
Let Fail denote the event that the above simulation fails and QueryH4 the event that AII 

makes a query H4(Vch / e(Uch, Certch + SKchRch). From the above simulation, the event Fail 
occurs if any one of the following events occurs: (1) E1: In the challenge phase, AII does not 
choose idθ as the challenge identity; (2) E2: AII queries the oracle OCorrupt on idθ; (3) E3: AII 
queries the oracle OReKeyGen on (idθ, idj); (4) E4: ABDH rejects a valid ciphertext submitted to the 
oracle OReEncrypt; (5) E5: ABDH rejects a valid ciphertext submitted to the oracle ODecrypt. 

We clearly have that Pr[¬E1] = 1/quc and ¬E1 implies ¬E2 and ¬E3. As in the proof of 
Lemma 1, we have Pr[E4] ≤ qren/2k and Pr[E5] ≤ qdec/2k. Thus, the probability that the above 
simulation does not fail is 
 

Pr[¬Fail] = Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4 ∧ ¬E5] ≥
1 (1 )(1 )

2 2
ren dec
k k

uc

q q
q

− − .          (11) 

 

Let Event be the event QueryH4 | ¬Fail. It is clear that if Event does not happen, then AII 
does not gain any advantage greater than 1/2 in guessing b. Namely, we have the probability 
Pr[ b b′= |¬Event] = 1/2. Hence, by splitting the probability Pr[ b b′= ], we obtain Pr[ b b′= ] = 
Pr[ b b′= |¬Event]⋅Pr[¬Event] + Pr[ b b′= |Event]⋅Pr[Event] ≤ Pr[¬Event]/2 + Pr[Event] = 
1/2 + Pr[Event]/2. By the definition of the advantage in IND-CBPRE-CCA2 Game, we have 
ε ≤ 2|Pr[ b b′= ] - 1/2| ≤ Pr[Event] ≤ Pr[QueryH4]/Pr[¬Fail]. Hence, we get  
 

Pr[QueryH4] ≥ εPr[¬Fail] ≥ (1 )(1 )
2 2
ren dec
k k

uc

q q
q
ε

− − .                        (12) 

 

Finally, we get the announced bound on ABDH’s advantage in solving the BDH problem by 
noting that ABDH selects the correct tuple from the list H4List with probability 1/q4. 

4.3 Performance Comparison 
To evaluate the performance of the proposed scheme, we provide a comparison of it and the 
previous two CB-PRE schemes [4, 32]. Without considering pre-computation, the details of 
the compared schemes are listed in Table 1. We denote pairing, exponentiation in GT, 
exponentiation in G, map-to-point hash and general hash by P, ET, E, HM and H respectively, 
the bit length of an element in G, an element in GT and a message by |G|, |GT| and n respectively. 
In Sur et al.’s scheme [4], k0 denotes the bit-length of the random values used to encrypt the 
data, which should be at least 160 in order to obtain a reasonable security. 
 

Table 1. Performance of the CB-PRE schemes 
Compared Items Ours Sur et al.’s [4] Li et al.’s [32] 

Encrypt 2P+2ET+1E+2HM+2H 2P+2ET+3E+3HM+1H 3P+2ET+3E+3HM+2H 

ReKeyGen 1P+2E+3HM 2P+2ET+3E+4HM 2P+1ET+5E+4HM 

ReEncrypt 1P 7P+1HM 5P+1HM 

Decrypt1 1P+2E+1HM+2H 2P+1ET+2E+1HM+2H 4P+2E+2HM+2H 

Decrypt2 2P+2E+1HM+2H 4P+1ET+1E+3HM+2H 4P+1ET+1E+2HM+2H 

Re-encryption key size |G| 3|G| |GT|+4|G| 

Original ciphertext size  |GT|+|G|+n 3|G|+n+k0 2|GT|+2|G|+n 

Re-encryption ciphertext size  |GT|+|G|+n 2|GT|+2|G|+n+k0 2|GT|+2|G|+n 
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Table 2. Simulation results of the CB-PRE schemes (1024-bit security level) 

Compared Items Ours Sur et al.’s [4] Li et al.’s [32] 

Computation cost 
(ms) 

Encrypt 63.16 78.96 99.18 

ReKeyGen 41.92 82.02 89.45 

ReEncrypt 20.04 143.32 103.24 

Decrypt1 35.84 61.19 98.96 

Decrypt2 55.88 100.97 97.93 

Communication 
cost (bits) 

Re-encryption key 512 1536 3072 
Original ciphertext 1536 + n 1536 + n + k0 3072 + n 

Re-encryption ciphertext  1536 + n 3072 + n + k0 3072 + n 
 

To give a more intuitive comparison, we implement these CB-PRE schemes using the 
standard cryptographic library MIRACAL [34]. Our experimental platform is a PIV 3-GHZ 
processor with 512-MB memory and a Windows XP operation system. To achieve the 
1024-bit (2048-bit) RSA level security, the Tate pairing defined over the super-singular 
elliptic curve E/Fp: y2 = x3 +x with embedding degree 2 is used, where p is a 512-bit (1024-bit) 
prime. The simulation results are given in Table 2 and Table 3.  
 

Table 3. Simulation results of the CB-PRE schemes (2048-bit security level) 
Compared Items Ours Sur et al.’s [4] Li et al.’s [32] 

Computation cost 
(ms) 

Encrypt 522.28 632.89 814.50 

ReKeyGen 333.52 654.30 706.31 

ReEncrypt 181.38 1293.71 928.08 

Decrypt1 290.96 508.49 853.04 

Decrypt2 471.32 867.15 845.83 

Communication 
cost (bits) 

Re-encryption key 1024 3072 6144 
Original ciphertext 3072 + n 3072 + n + k0 6144 + n 

Re-encryption ciphertext 3072 + n 6144 + n + k0 6144 + n 
 

The above comparison shows that our scheme is more efficient than the previous two 
CB-PRE schemes in both the computation cost and the communication cost. Actually, the 
computation performance of our scheme can be further optimized. If the pairings e(Ppub, QA) 
and e(PKA, RA) are pre-computed, then the algorithm Encrypt of our scheme requires 
computing only two exponentiations in GT, one exponentiation in G and two general hashes to 
encrypt a message.  

5. Conclusion 
In this paper, we develop an efficient CB-PRE scheme from pairings and prove it to achieve 
chosen-ciphertext security in the random oracle model. Compared with the previous CB-PRE 
schemes, the proposed scheme enjoys obvious advantage in both the computation efficiency 
and the communication bandwidth. However, as pairing operation is extremely disliked by the 
power-constrained devices, it would be interesting to construct CB-PRE schemes that do not 
depend on parings. In addition, the security of our scheme can only be achieved in the random 
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oracle model. So, another interesting problem is to construct secure CB-PRE schemes in the 
standard model.  

References 
[1] J.M. Do, Y.J. Song and N. Park, “Attribute based proxy re-encryption for data confidentiality in 

cloud computing environments,” in Proc. of 2011 First ACIS/JNU International Conference on 
Computers, Networks, Systems and Industrial Engineering, pp. 248-251, 2011.  
Article (CrossRef Link). 

[2] G. Wang, Q. Liu and J. Wu, “Achieving fine-grained access control for secure data sharing on 
cloud servers,” Concurrency and Computation: Practice and Experience, vol. 23, no. 12, pp. 
1443-1464, 2011. Article (CrossRef Link). 

[3] L. Xu, X. Wu and X. Zhang, “CL-PKE: a certificateless proxy re-encryption scheme for secure 
data sharing with public cloud,” in Proc. of the 7th ACM Symposium on Information, Computer 
and Communications Security, pp. 87-88, 2012. Article (CrossRef Link). 

[4] C. Sur, Y. Park, S.U. Shin, K.H. Rhee and C. Seo, “Certificate-based proxy re-encryption for 
public cloud storage,” in Proc. of the 7th International Conference on Innovative Mobile and 
Internet Services in Ubiquitous Computing, pp. 159-166, 2013.  Article (CrossRef Link). 

[5] S.H. Lee and I.Y. Lee, “A secure index management scheme for providing data sharing in cloud 
storage,” Journal of Information Processing Systems, vol. 9, no. 2, pp. 287-300, 2013.  
Article (CrossRef Link). 

[6] S.H. Seo, M. Nabeel, X. Ding and E. Bertino, “An efficient certificateless encryption for secure 
data sharing in public clouds,” IEEE Transactions on Knowledge and Data Engineering, vol. 26, 
no. 9, pp. 2107-2119, 2013. Article (CrossRef Link). 

[7] K. Liang, M.H. Au, J.K. Liu, W. Susilo, D.S. Wong, G. Yang, T.V.X. Phuong and Q. Xie, “A 
DFA-based functional proxy re-encryption scheme for secure public cloud data sharing,” IEEE 
Transactions on Information Forensics and Security, vol. 9, no. 10, pp. 1667-1680, 2014. 
Article (CrossRef Link). 

[8] Q. Liu, G. Wang and J. Wu, “Time-based proxy re-encryption scheme for secure data sharing in a 
cloud environment,” Information Sciences, vol. 258, pp. 355-370, 2014.  
Article (CrossRef Link). 

[9] N.D. Han, L. Han, D.M. Tuan, H.P. In and M. Jo, “A scheme for data confidentiality in 
cloud-assisted wireless body area networks,” Information Sciences, vol. 284, pp. 157-166, 2014. 
Article (CrossRef Link). 

[10] J.W. Li, J. Li, Z. Liu and C. Jia, “Enabling efficient and secure data sharing in cloud computing,” 
Concurrency and Computation: Practice and Experience, vol. 26, no. 5, pp. 1052-1066, 2014. 
Article (CrossRef Link). 

[11] M. Blaze, G. Bleumer and M. Strauss, “Divertible protocols and atomic proxy cryptography,” in 
Proc. of Advances in Cryptology - Eurocrypt 1998, pp. 127-144, 1998.  
Article (CrossRef Link). 

[12] G. Ateniese, K. Fu, M. Green and S. Hohenberger, “Improved proxy re-encryption schemes with 
applications to secure distributed storage,” ACM Transactions on Information and System Security, 
vol. 9, no. 1, pp. 1-30, 2006. Article (CrossRef Link). 

[13] R. Canetti and S. Hohenberger, “Chosen-ciphertext secure proxy re-encryption,” in Proc. of the 
14th ACM conference on Computer and Communications Security, pp. 185-194, 2007.  
Article (CrossRef Link). 

[14] R.H. Deng, J. Weng, S. Liu and K. Chen, “Chosen-ciphertext secure proxy re-encryption without 
pairings,” in Proc. of CANS 2008, pp. 1-17, 2008. Article (CrossRef Link). 

[15] B. Libert and D. Vergnaud, “Unidirectional chosen-ciphertext secure proxy re-encryption,” in 
Proc. of Public Key Cryptography - PKC 2008, pp. 360-379, 2008.  
Article (CrossRef Link). 

[16] J. Shao and Z. Cao, “CCA-secure proxy re-encryption without pairings,” in Proc. of Public Key 

http://dx.doi.org/10.1109/CNSI.2011.34
http://dx.doi.org/10.1002/cpe.1698
http://dx.doi.org/10.1145/2414456.2414507
http://dx.doi.org/10.1109/IMIS.2013.35
http://dx.doi.org/10.3745/JIPS.2013.9.2.287
http://dx.doi.org/10.1109/TKDE.2013.138
http://dx.doi.org/10.1109/TIFS.2014.2346023
http://dx.doi.org/10.1016/j.ins.2012.09.034
http://dx.doi.org/10.1016/j.ins.2014.03.126
http://dx.doi.org/10.1002/cpe.3067
http://dx.doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1145/1127345.1127346
http://dx.doi.org/10.1145/1315245.1315269
http://dx.doi.org/10.1007/978-3-642-00468-1_20
http://dx.doi.org/10.1007/978-3-540-78440-1_21


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 7, July 2015                                    2717 

Cryptography - PKC 2009, pp. 357-376, 2009. Article (CrossRef Link). 
[17] M. Green and G. Ateniese, “Identity-based proxy re-encryption,” in Proc. of ACNS 2007, pp. 

288-306, 2007. Article (CrossRef Link). 
[18] C.K. Chu and W.G. Tzeng, “Identity-based proxy re-encryption without random oracles,” in Proc. 

of Information Security 2007, pp. 189-202, 2007. Article (CrossRef Link). 
[19] T. Matsuo, “Proxy re-encryption systems for identity-based encryption,” in Proc. of Pairing-Based 

Cryptography - Pairing 2007, pp 247-267, 2007. Article (CrossRef Link). 
[20] S. Luo, Q. Shen and Z. Chen, “Fully secure unidirectional identity-based proxy re-encryption,” in 

Proc. of Information Security and Cryptology - ICISC 2011, pp. 109-126, 2012.  
Article (CrossRef Link). 

[21] S.S. Al-Riyami and K.G. Paterson, “Certificateless public key cryptography,” in Proc. of Advances 
in Cryptology - Asiacrypt 2003, pp. 452-473, 2003.Article (CrossRef Link). 

[22] C. Gentry, “Certificate-based encryption and the certificate revocation problem,” in Proc. of 
Advances in Cryptology - Eurocrypt 2003, pp. 272-293, 2003. Article (CrossRef Link). 

[23] C. Sur, C. D. Jung and K. H. Rhee, “Multi-receiver certificate-based encryption and application to 
public key broadcast encryption,” in Proc. of 2007 ECSIS Symposium on Bio-inspired, Learning, 
and Intelligent Systems for Security, pp. 35-40, 2007. Article (CrossRef Link). 

[24] D. Galindo, P. Morillo and C. Ràfols, “Improved certificate-based encryption in the standard 
model,” Journal of Systems and Software, vol. 81, no. 7, pp. 1218-1226, 2008.  
Article (CrossRef Link). 

[25] J. K. Liu and J. Zhou, “Efficient certificate-based encryption in the standard model,” in Proc. of 6th 
Int. Conf. on Security and Cryptography for Networks, pp. 144-155, 2008.  
Article (CrossRef Link). 

[26] Y. Lu, J. Li and J. Xiao, “Constructing efficient certificate-based encryption with paring,” Journal 
of Computers, vol. 4, no. 1, pp. 19-26, 2009. Article (CrossRef Link). 

[27] Z. Shao, “Enhanced certificate-based encryption from pairings,” Computers and Electrical 
Engineering, vol. 37, no. 2, pp. 136-146, 2011. Article (CrossRef Link). 

[28] J. Yao, J. Li and Y. Zhang, “Certificate-based encryption scheme without pairing,” KSII 
Transactions on Internet and Information Systems, vol. 7, no. 6, pp. 1480-1491, 2013.  
Article (CrossRef Link). 

[29] T. Hyla, W. Maćków and J. Pejaś, “Implicit and explicit certificates-based encryption scheme,” in 
Proc. of the 13th IFIP TC8 International Conference on Computer Information Systems and 
Industrial Management, pp. 651-666, 2014. Article (CrossRef Link). 

[30] Y. Lu and J. Li, “Efficient construction of certificate-based encryption secure against public key 
replacement attacks in the standard model,” Journal of Information Science and Engineering, vol. 
30, no. 5, pp. 1553-1568, 2014. Article (CrossRef Link). 

[31] M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm for designing efficient 
protocols,” in Proc. of 1st ACM Conf. on Communications and Computer Security, pp. 62-73, 1993. 
Article (CrossRef Link).  

[32] J. Li, X. Zhao and Y. Zhang, “Certificate-based conditional proxy re-encryption,” in Proc. of the 
8th International Conference on Network and System Security, pp. 299-310, 2014.  
Article (CrossRef Link). 

[33] D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,” in Proc. of 
Advances in Cryptology - Crypto 2001, pp. 213-229, 2001. Article (CrossRef Link). 

[34] MIRACL, Multiprecision integer and rational arithmetic cryptographic library, 
http://certivox.org/display/EXT/MIRACL. Article (CrossRef Link). 

 
 
 
 
 

http://dx.doi.org/10.1007/978-3-642-00468-1_20
http://dx.doi.org/10.1007/978-3-540-72738-5_19
http://link.springer.com/book/10.1007/978-3-540-75496-1
http://dx.doi.org/10.1007/978-3-540-75496-1_13
http://dx.doi.org/10.1007/978-3-540-73489-5_13
http://dx.doi.org/10.1007/978-3-642-31912-9_8
http://dx.doi.org/10.1007/978-3-540-40061-5_29
http://dx.doi.org/10.1007/3-540-39200-9_17
http://dx.doi.org/10.1109/BLISS.2007.23
http://dx.doi.org/10.1016/j.jss.2007.09.009
http://dx.doi.org/10.1007/978-3-540-85855-3_10
http://dx.doi.org/10.4304/jcp.4.1.19-26
http://dx.doi.org/10.1016/j.compeleceng.2011.01.007
http://dx.doi.org/10.3837/tiis.2013.06.008
http://dx.doi.org/10.1007/978-3-662-45237-0_59
http://www.iis.sinica.edu.tw/page/jise/2014/201409_14.html
http://dx.doi.org/10.1145/168588.168596
http://dx.doi.org/10.1007/978-3-319-11698-3_23
http://dx.doi.org/10.1007/3-540-44647-8_13
http://certivox.org/display/EXT/MIRACL


2718                  Lu: Efficient Certificate-Based Proxy Re-encryption Scheme for Data Sharing in Public Clouds 

 
 

Yang Lu  received the Ph.D. degree from PLA University of Science and Technology in 
2009. He has been working in HoHai University from 2003. Currently, he is an Assistant 
Professor in College of Computer and Information Engineering. His major research interests 
include information security and cryptography, network security and cloud security, etc. He 
has published more than 30 scientific papers in international conferences and journals.  


