• Title/Summary/Keyword: ray of symmetry

Search Result 133, Processing Time 0.034 seconds

A Study of Dose Stability at Low Monitor Unit Setting for Multiple Irradiated Field (다중 조사면 치료 시 기계적 입력치(MU)에 따른 선량적 안정성에 대한 연구)

  • Kim Joo-Ho;Lee Sang-Gyu;Shin Hyun-Kyung;Lee Suk;Na Soo-Kyung;Cho Jung-Hee;Kim Dong-Wook
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • Purpose : Many authors have been introduced field in field technique and 3-D conformal radiotherapy that increased the tumor dose as well as decreased the dose of abutting critical organ. These technique have multiple beam direction and small beam segments even below 10 MU(monitor unit)for each field. we have confirmed the influence of low MU on dose output and beam stability. Materials and Methods : To study the dose output, the dose for each field was always 90MU, but it divided into different segment size: 1, 2, 3, 5, 10, 15 segments, 90, 45, 30, 18, 9, 6 MU the measurements were carried out for X-ray energy 4 MV, 6 MV, 10 MV of three LINAC(Varian 600C, 2100C, 2100C, 2100C/D), in addition each measurement was randomly repeated three times for each energy. To study the field symmetry and flatness, X-omat V films were irradiated. After being developed, films were scanned and analyzed using densitometer. Results : Influence of low MU on dose is slightly more increase output about $1.2{\sim}2.9%$ in cGy/mu than 90MU, but may not changed beam quality(flatness or symmetry), Output stability depends on dose rate(PRF)rather than beam energy, field size. Conclusion : Presented result are under the limits(out put<3%, flatness<${\pm}3%$, symmetry<2%). The 3 accelerators are safe to use and to perform conformal radiotherapy treatments in small segments, small MU around 10MU. but Even if the result presented here under the limits, continuous adjustments and periodic QA should be done for use of small MU

  • PDF

Synthesis and Crystal Structure of Ag4Br4 Nanoclusters in the Sodalite Cavities of Fully K+-Exchanged Zeolite A (LTA)

  • Lim, Woo-Taik;Choi, Sik-Young;Kim, Bok-Jo;Kim, Chang-Min;Lee, In-Su;Kim, Seok-Han;Heo, Nam-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1090-1096
    • /
    • 2005
  • $Ag_4Br_4$ nanoclusters have been synthesized in about 75% of the sodalite cavities of fully $K^+$-exchanged zeolite A (LTA). An additional KBr molecule is retained in each large cavity as part of a near square-planar $K_4Br^{3+}$ cation. A single crystal of $Ag_{12}$-A, prepared by the dynamic ion-exchange of $Na_{12}$-A with aqueous 0.05 M $AgNO_3$ and washed with $CH_3OH$, was placed in a stream of flowing 0.05 M KBr in $CH_3OH$ for two days. The crystal structure of the product ($K_9(K_4Br)Si_{12}Al_{12}O_{48}{\cdot}0.75Ag_4Br_4$, a = 12.186(1) $\AA$) was determined at 294 K by single-crystal X-ray diffraction in the space group Pm m. It was refined with all measured reflections to the final error index $R_1$ = 0.080 for the 99 reflections for which $F_o\;{\gt}\;4_{\sigma}\;(F_o)$. The thirteen $K^+$ ions per unit cell are found at three crystallographically distinct positions: eight $K^+$ ions in the large cavity fill the six-ring site, three $K^+$ ions fill the eight-rings, and two $K^+$ ions are opposite four-rings in the large cavity. One bromide ion per unit cell lies opposite a four-ring in the large cavity, held there by two eight-ring and two six-ring $K^+$ ions ($K_4Br^{3+}$). Three $Ag^+$ and three $Br^-$ions per unit cell are found on 3-fold axes in the sodalite unit, indicating the formation of nano-sized $Ag_4Br_4$ clusters (interpenetrating tetrahedra; symmetry $T_d$; diameter ca. 7.9 $\AA$) in 75% of the sodalite units. Each cluster (Ag-Br = 2.93(3) $\AA$) is held in place by the coordination of its four $Ag^+$ ions to the zeolite framework (each $Ag^+$ cation is 2.52(3) $\AA$ from three six-ring oxygens) and by the coordination of its four $Br^-$ ions to $K^+$ ions through six-rings (Br-K = 3.00(4) $\AA$).

A Study to Acquire Sharp Images in the Haas(Skull PA Axial Projection) (Haas 촬영법에서 선예한 영상 획득을 위한 연구)

  • Ahn, Jun-Ho;Han, Jae-Bok;Song, Jong-Nam;Kim, In-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.319-325
    • /
    • 2022
  • The Study In order to obtain a sharpness Image from Skull PA axial projection (Haas) in a head axial X-ray Examination, this study changed the posture angle using Skull Phantom and evaluated the image subjectively to 5 radiologists who worked in the Department of Imaging at University Hospital. In the prone position, the head was lowered 4 cm from the back of the head, entered 25° toward the head, and the image evaluation score was high with 20 points, such as the back bone, dorsum sellae projected in the large hole, and posterior clinoid process. In addition, the score significance was verified, and the Cronbach Alpha value was evaluated to have good reliability of 0.789. As a result of calculating the signal-to-noise ratio (SNR) by setting the region of interest (ROI) of the image, it was the highest at 5.957 for 25° incident at the back of the head and 6.430 for 30° incident at the back of the head. As a result of the study, in order to obtain a sharp image of the back of the head bone, dorsum sellae, and posterior clinoid process when shooting in the axial direction after the head, it is filmed by tilting 25° toward the head from 4 cm below the back of the head. In order to obtain a sharp image of rock pyramid symmetry, petrous ridge, sagittal suture, and lambdoid suture, it is thought that it will be helpful for clinical use if you shoot it 8cm down from the back of the head and tilt it 30° toward the head.

Study on the Structural and Transporting Property of Sr2Ru1-xCuxO4-y(0.0≤x≤0.5) (Sr2Ru1-xCuxO4-y(0.0≤x≤0.5) 화합물의 구조 및 전달 특성에 대한 연구)

  • Park, Jung-Chul
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.614-618
    • /
    • 2003
  • $Sr_2Ru_{1-x}Cu_xO_{4-y}(0.0{\le}x{\le}0.5)$ compounds were prepared using a conventional solid state reaction. Based on the Rietveld refinements of X-ray diffraction results, it is revealed that $Sr_2Ru_{1-x}Cu_xO_{4-y}$ compounds are the single phases with K2NiF4 type tetragonal system in the range of 0=x=0.3, while the mixed phases of$Sr_2RuO_4$ and $Sr_2CuO_3$ in the range of $0.4{\le}x{\le}0.5$. By means of X-ray photoelectron spectroscopy, the valence states of Ru and Cu in $Sr_2Ru_{1-x}Cu_xO_{4-y}$, have been confirmed to 4+ and 2+, respectively. The bond length difference between $Ru-O_1 ({\times}4)\;and\;Ru-O_2 ({\times}2)\;in\;RuO_6$ octahedron is gradually decreased with increasing Cu content in $Sr_2Ru_{1-x}Cu_xO_{4-y}$, which results in the lower c/a ratio. So, it might be assured that the variation of local symmetry of $RuO_6$ octahedron is very closely related to the transporting property of $Sr_2Ru_{1-x}Cu_xO_{4-y}$ compounds. The behavior of resistivity discloses that the metallic property in $Sr_2RuO_4$ changes into the semiconducting one in proportion to the Cu content in $Sr_2Ru_{1-x}Cu_xO_{4-y}$.

Rietveld Refinement and Crystal Structure of K-Ba Substituted Synthetic Hollandite, ($K_{2x}Ba_{1-x}Cr_2Ti_6O_{16}$) (리트벨트법을 이용한 K-Ba 치환 합성 홀란다이트($K_{2x}Ba_{1-x}Cr_2Ti_6O_{16}$)의 결정구조 연구)

  • 최진범;김태현
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.128-136
    • /
    • 2001
  • The K-Ba complete solid solution of 7 synthetic hollandite-type minerals ($K_{2x}$ $Ba_{1-x}$ $Cr_2$/$Ti_{6}$ $O_{16}$ , x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0, respectively) are studied by the X-ray powder diffraction and Rietveld refinement to find structural transformation during substitution of $Ba^{2+}$ by $K^{+}$ in A site of the tunnel structure of hollandite. Rietveld indices indicate that $R_{wp}$ with respect to $R^{exp}$ ($R_{wp}$ $R_{exp}$ ) are in the range of 15.66%/20.90% and 14.74%/l9.37%, $R_{B}$ and S(Goodness of Fitness) are 6.45~8.97%, 1.45~1.63, respectively. Unit cell parameters of synthetic hollandites, space group 14/m, are a=10.1194(2)~10.0599(2)$\AA$, c=2.9572(6)~2.9512(7)$\AA$, and V=302.75~298.66$\AA^{3}$. Rutile formed as an impurity in those with more than 50% K contents in hollandite series. Substitution of Ba by K ion in a tunnel structure results in constant decrease of cell parameters, but is not sufficient enough to change the hollandite structure. Our data indicate that transformation of tetragonal 14/m to lower symmetry of monoclinic 12/m in hollandite structure may at least be affected by other cation substitution in same A site and/or by cation substitution in B site.

  • PDF

Two Crystal Structures of Dehydrated $Ag^+$ and $Rb^+$ Exchanged Zeolite A, $Ag^{12-x}Rb_{x}-A$, x = 2 and 3 ($Ag^+$ 이온과 $Rb^+$ 이온으로 치환된 제올라이트 A ($Ag^{12-x}Rb_{x}-A$, x = 2 및 3) 를 탈수한 결정구조)

  • Yang Kim;Seong Hwan Song;Duk Soo Kim;Young Wook Han;Dong Kyu Park
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.18-24
    • /
    • 1989
  • Two crystal structures of dehydrated $Ag^+$ and $Rb^+$ exchanged zeolite A, stoichiometries of $Ag_{9}Rb_{3}-A$ (a = 12.278(2)${\AA}$) and $Ag_{10}Rb_{2}-A$ (a = 12.286(2)${\AA}$) per unit cell, have been determined by single crystal x-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at 21(1)$^{\circ}$C. The crystals of $Ag_{10}Rb_{2}-A$ and $Ag_{10}Rb_{2}-A$ were prepared by flow methods using exchanged solution in which mole ratios of AgNO$_3$ and RbNO$_3$ were 1:5 and 1:50, respectively, with the total concentration of 0.05 M. The structures of the dehydrated $Ag_{9}Rb_{3}-A$ and the $Ag_{10}Rb_{2}-A$ were refined to the final error indices, $R_1$ = 0.064 and $R_2$ = 0.060 with 291 reflections, and $R_1$ = 0.063 and $R_2$ = 0.080 with 416 reflections respectively, for which I >3${\sigma}$(I). In both structures, one reduced silver atom per unit cell was found inside the sodalite cavity. It may be present as a hexasilver cluster in 1/6 of the sodalite units or as an isolated Ag atom coordinated to 4 $Ag^+$ ions in each sodalite unit to give $(Ag_5)^{4+}$, symmetry 4 mm. In the structure of dehydrated $Ag_{9}Rb_{3}-A$, 8 $Ag^+$ ions lie on the threefold axis and each is nearly at the center of the 8-rings at the sites of $D_{4h}$ symmetry. In the structure of dehydrated $Ag_{10}Rb_{2}-A$, two crystallographically different eight 6-ring $Ag^+$ ions were found; $7Ag^+$ ions in the (111) planes of their O(3) framework oxygens and one $Ag^+$ ion inside of sodalite cavity. Two crystallographically different 8-ring cations were also found; two $Rb^+$ ions at the centers of the 8-oxygen rings and one $Ag^+$ ion into the large cavity. Both structures indicate that $Rb^+$ ions prefer to occupy the 8-ring sites, while $Ag^+$ ions prefer to occupy the 6-ring sites.

  • PDF

Synthesis and Structural Characterization of Main Group 15 Organometallics R3M and R(Ph)2P(=N-Ar)(M = P, Sb, Bi; R = phenanthrenyl; Ar = 2,6-iPr2-C6H3)

  • Lee, Eun-Ji;Hong, Jin-Seok;Kim, Tae-Jeong;Kang, Young-Jin;Han, Eun-Me;Lee, Jae-Jung;Song, Ki-Hyung;Kim, Dong-Uk
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1946-1952
    • /
    • 2005
  • New group 15 organometallic compounds, M$(phenanthrenyl)_3$ (M = P (1), Sb (2), Bi (3)) have been prepared from the reactions of 9-phenanthrenyllithium with $MCl_3$. A reaction of 9-(diphenylphosphino)phenanthrene with 2,6-diisopropylphenyl azide led to the formation of (phenanthrenyl)${(Ph)}_2P$=N-(2,6-$^iPr_2C_6H_3$) (4). The crystal structures of 2 and 4 have been determined by single-crystal X-ray diffractions, both of which crystallize with two independent molecules in the asymmetric unit. Compound 2 shows a trigonal pyramidal geometry around the Sb atom with three phenanthrenyl groups being located in a screw-like fashion with an approximately $C_3$ symmetry. A significant amount of CH- -$\pi$ interaction exists between two independent molecules of 4. The phosphorus center possesses a distorted tetrahedral environment with P-N bond lengths of 1.557(3)$\AA$ (P(1) N) and 1.532(3)$\AA$ (P(2)-N), respectively, which are short enough to support a double bond character. One of the most intriguing structural features of 4 is an unusually diminished bond angle of C-N-P, attributable to the hydrogen bonding of N(1)-H(5A) [ca. 2.49$\AA$ between two adjacent molecules in crystal packing. The compounds 1-3 show purple emission both in solution and as films at room temperature with emission maxima ($\lambda_{max}$) at 349, 366, and 386 nm, respectively, attributable to the ligand centered $\pi$ $\rightarrow$ $\pi^\ast$ transition in phenanthrene contributed by the lone pair electrons of the Gp 15 elements. Yet the nature of luminescence observed with 4 differs in that it originates from $\pi$ (diisopropylbenzene)-$\pi^\ast$ (phenanthrene) transitions with the $\rho\pi$contribution from the nitrogen atom. The emission maximum of 4 is red-shifted ranging 350-450 nm due to the internal charge transfer from the phenanthrenyl ring to the N-arylamine group as deduced from the ab initio calculations.

Reaction of Dehydrated Ag$_2$Ca$_5$-A with Cesium. Crystal Structures of Fully Dehydrated Ag$_2$Ca$_5$-A and Ag$_2$Cs$_{10}$-A

  • Kim, Yang;Song, Seong-Hwan;Park, Jong-Yul;Kim, Un-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.243-247
    • /
    • 1989
  • Two crystal structures of dehydrated $Ag^+\;and\;Ca^{2+}$ exchanged zeolite A, $Ag_2Ca_$5-A, reacting with 0.01 Torr of Cs vapor at $200^{\circ}C$ for 2 hours and 0.1 Torr of Cs vapor at $250^{\circ}C$ for 48 hours, respectively, have been determined by single crystal X-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at $21(1)^{\circ}C$. The stoichiometry of first crystal was $Ag_2Ca_5$-A (a = 12.294(1)${\AA}$), indicating that Cs vapor did not react with cations in zeolite A and that of second crystal was $Ag_2Cs_{10}$-A (a = 12.166(1)${\AA}$), indicating that all $Ca^{2+}$ ions were reduced by Cs vapor and replaced by $Cs^+$ ions. Full-matrix least-squares refinements of $Ag_2Ca_5-A\;and\;Ag_2Cs_{10}$-A has converged to the final error indices, $R_1\;=\;0.041\;and\;R_2$ = 0.048 with 227 reflections, and $R_1\;=\;0.117\;an\;n\;fdd\;R_2$ = 0.120 with 167 reflections, respectively, for which I > $3{\sigma}$(I). In the structure of $Ag_2Ca_5$-A, both $Ag^+$ ions and $Ca^{2+}$ ions lie on two crystal symmetrically independent threefold axis sites on the 6-rings; $2\;Ag^+$ ions are recessed 0.33 ${\;AA}$ from the (111) planes of three O(3) oxygens and 5 $Ca^{2+}$ ions lie on the nearly center of each 6-oxygen planes. In the structure of $Ag_2Cs_{10}-A,\;Cs^+$ ions lie on the 5 different crystallographic sites. 3 $Cs^+$ ions lie at the centers of the 8-rings at sites of D4h symmetry. 6 $Cs^+$ ions lie on the threefold axes of unit cell: $4\;Cs^+$ ions are found deep in the large cavity and 2 $Cs^+$ ions are found in the sodalite cavity. One $Cs^+$ ion is found in the large cavity near a 4-ring.

Fabrication of Stack-Structured Gas Sensor of LaCrxCo1-xO3/Li1.3Al0.3Ti1.7(PO4)3 and Its NOx Sensing Properties (LaCrxCo1-xO3/Li1.3Al0.3Ti1.7(PO4)3의 적층구조를 가지는 가스센서 제조와 그의 NOx 검지특성)

  • Lee, Young-Sung;Shimizu, Y.;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.423-428
    • /
    • 2015
  • Impedancemetric $NO_x$ (NO and $NO_2$) gas sensors were designed with a stacked-layer structure and fabricated using $LaCr_xCo_{1-x}O_3$ (x = 0, 0.2, 0.5, 0.8 and 1) as the receptor material and $Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ plates as the solid-electrolyte transducer material. The $LaCr_xCo_{1-x}O_3$ layers were prepared with a polymeric precursor method that used ethylene glycol as the solvent, acetyl acetone as the chelating agent, and polyvinylpyrrolidone as the polymer additive. The effects of the Co concentration on the structural, morphological, and $NO_x$ sensing properties of the $LaCr_xCo_{1-x}O_3$ powders were investigated with powder X-ray diffraction, field emission scanning electron microscopy, and its response to 20~250 ppm of $NO_x$ at $400^{\circ}C$ (for 1 kHz and 0.5 V), respectively. When the as-prepared precursors were calcined at $700^{\circ}C$, only a single phase was detected, which corresponded to a perovskite-type structure. The XRD results showed that as the Co concentration of the $LaCr_xCo_{1-x}O_3$powders increased, the crystal structure was transformed from an orthorhombic phase to a rhombohedral phase. Moreover, the $LaCr_xCo_{1-x}O_3$ powders with $0{\leq}x<0.8$ had a rhombohedral symmetry. The size of the particles in the $LaCr_xCo_{1-x}O_3$powders increased from 0.1 to $0.5{\mu}m$ as the Co concentration increased. The sensing performance of the stack-structured $LaCr_xCo_{1-x}O_3/Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ sensors was found to divide the impedance component between the resistance and capacitance. The response of these sensors to NO gas was more sensitive than that to $NO_2$ gas. Compared to other impedancemetric sensors, the $LaCr_{0.8}Co_{0.2}O_3/Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ sensor exhibited good reversibility and reliable sensingresponse properties for $NO_x$ gases.

Nonstoichiometry and Magnetic Properties of the $Eu_{1-x}Sr_xCoO_{3-y}$ System ($Eu_{1-x}Sr_xCoO_{3-y}$계의 비화학량론과 자기적 특성)

  • Ryu, Kwang Hyun;Min, Ji Young;Yo, Chul Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.508-512
    • /
    • 1995
  • A series of samples in the $Eu_{1-x}Sr_xCoO_{3-y}$ system has been prepared by heating the proper amount of reactant mixture to 1150$^{\circ}C$ under an ambient atmosphere, and the solid solutions are identified by X-ray powder diffraction analysis. The crystal system of samples for the compositions of x=0.00 and 0.25 are found to be orthorhombic whose local symmetry is similiar to the distorted octahedra with orthoferrite type one, whereas those of x=0.50 and 0.75 to be the cubic system, and that of x=1.00 to the orthorhombic similiar to be the brownmillerite type. The amount of $Co^{4+}$ ion (${\tau}$ value) is maximized at the composition of x=0.50, and the oxygen vacancies increase with the x value. The nonstoichiometric chemical formula of each compound could be determined from the mole ratio of $Co^{4+}$ ion and oxygen vacancies. The $Co^{3+}$ ion located in octahedral site has spin transition from low spin to high spin states with increasing temperature. Therefore, the effective magnetic moment of each samples obtained from the magnetic measurement is increased with the increasing temperature. The $EuCoO_{3.00}$ has strong antiferromagnetic interaction between the neighboring $Co^{3+}$ ions through the intermediate oxygen ions. With the increasing ${\tau}$ value, the absolute {\theta}_p$ value is decreased by the ferromagnetic interaction of $Co^{3+}-O^2-Co^{4+}$ and thus the {\theta}_p$ has positive value at x=0.50.

  • PDF