• Title/Summary/Keyword: raw ginseng

Search Result 278, Processing Time 0.023 seconds

Anti-inflammatory Effect of Cultivated Wild Panax ginseng Extracts at Various Ages in RAW264.6 Macrophages (RAW264.7 대식세포주에서 근령별 산양삼 추출물의 항염증 효과)

  • Lee, Geun;Na, Guihwan;Kim, Wooki;Baik, Mooyeol;Lee, Hyungjae;Hwang, Jae-Kwan
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.201-207
    • /
    • 2017
  • It is well-known that cultivated wild Panax ginseng has anti-inflammatory effect. However, a comparative study on cultivation period vs biofunctionality is currently lacking. In this study, 70% ethanol extracts of 3-years (yrs)-, 5-yrs-, or 7-yrs-old cultivated wild ginseng were evaluated for their inhibitory effects on RAW264.7 murine macrophages. Specifically, the production of pro-inflammatory cytokines (interleukin-6 [IL-6] and tumor necrosis factor-alpha [TNF-${\alpha}$]), the expression of surface proteins (CD80, CD86, and MHC-II), and the phagocytic properties were investigated. RAW264.7 cells were induced by 500 ng/mL of lipopolysaccharide (LPS) and treated with 0.1, 1, and 10 ppm of samples. LPS-induced IL-6, TNF-${\alpha}$ and surface proteins in all samples were down-regulated in a dose-dependent manner. Both IL-6 and TNF-${\alpha}$ were significantly reduced at 10 ppm of the 7-yrs-old sample compared to 10 ppm of 3-yrs- and 5-yrs-old samples. CD80 and CD86 were also reduced at 10 ppm of all samples, and there was no difference among samples. The phagocytosis has no difference except in 10 ppm of 3 yr-old sample. The results suggest that cultivated wild ginseng extract has anti-inflammatory effect without decreasing phagocytosis.

Korean Red Ginseng saponin fraction exerts anti-inflammatory effects by targeting the NF-κB and AP-1 pathways

  • Lee, Jeong-Oog;Yang, Yanyan;Tao, Yu;Yi, Young-Su;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.489-495
    • /
    • 2022
  • Background: Although ginsenosides and saponins in Korea red ginseng (KRG) shows various pharmacological roles, their roles in the inflammatory response are little known. This study investigated the anti-inflammatory role of ginsenosides identified from KRG saponin fraction (RGSF) and the potential mechanism in macrophages. Methods: The ginsenoside composition of RGSF was identified by high-performance liquid chromatography (HPLC) analysis. An anti-inflammatory effect of RGSF and its mechanisms were studied using nitric oxide (NO) and prostaglandin E2 (PGE2) production assays, mRNA expression analyses of inflammatory genes and cytokines, luciferase reporter gene assays of transcription factors, and Western blot analyses of inflammatory signaling pathways using the lipopolysaccharide (LPS)-treated RAW264.7 cells. Results: HPLC analysis identified the types and amounts of various panaxadiol ginsenosides in RGSF. RGSF reduced the generation of inflammatory molecules and mRNA levels of inflammatory enzymes and cytokines in LPS-treated RAW264.7 cells. Additionally, RGSF inhibited the signaling pathways of NF-κB and AP-1 by suppressing both transcriptional factors and signaling molecules in LPS-treated RAW264.7 cells. Conclusion: RGSF contains ginsenosides that have anti-inflammatory action via restraining the NF-κB and AP-1 signaling pathways in macrophages during inflammatory responses.

Cytotoxicity of White and Red Ginseng against Cancer Cells and Their Effects on the Cell Cycle (백삼과 홍삼의 암세포에 대한 세포독성 및 세포주기에 미치는 영향)

  • 정노팔;송선옥;최상운
    • Journal of Ginseng Research
    • /
    • v.24 no.4
    • /
    • pp.183-187
    • /
    • 2000
  • The present study was performed to evaluate the cytotoxicity of white and red ginseng extracts against cancer cells in vitro. We also examined the effects of those ginseng extracts on the cell cycle by using flow cytometry. We divided each white and red ginseng into two parts, main body and rhizome, and tested the cytotoxicity of each fraction against various mouse-originated cancer cells and mouse peritoneal macrophages. The red ginseng was more cytotoxic to the cancer cells in comparison with white ginseng, and the rhizome fractions were more cytotoxic than the mainbody fractions in the both of white and red ginseng. Among the cells tested, RAW264.7 cancer cells were most sensitive to all the ginseng fractions. In cell cycle analysis, all the fractions of white and red ginseng arrested the cell cycle at G$_2$/M phase.

  • PDF

Inhibitors of Nitric Oxide Synthesis from Ginseng in Activated Macrophages (활성화한 RAW 264.7 세 포주에서 인삼 Polyacetylene류의 Nitric Oxide 생성저해)

  • 류재하;장세란
    • Journal of Ginseng Research
    • /
    • v.22 no.3
    • /
    • pp.181-187
    • /
    • 1998
  • Nitric Oxide (NO), derived from L-arginine, is produced by two types (constitutive and inducible) of nitric oxide synthase (NOS). The NO produced in large amounts by the inducible NOS is known to be responsible for the vasodilation and hypotension observed in septic shock. We have found three polyacetylene compounds which inhibited the production of NO in LPS-activated RAW 264.7 cells. Their structures were identified as panauynol, ginsenoyne A and PQ-6 by the spec- troscopic analysis (IC50 values were 32.3 $\mu$M, 2.3 $\mu$M, 1.5 $\mu$M, respectively). These polyacetylenes may be useful candidates for the development of new drug to treat endotoxemia and inflammation accompanied by the overproduction of NO.

  • PDF

Anti-inflammatory Effect of Red Ginseng through Regulation of MAPK in Lipopolysaccharide-stimulated RAW264.7 (Lipopolysaccharide로 유도된 RAW264.7 세포에서 MAPK에 의한 홍삼추출물의 항염증 효과)

  • Shin, Ji-Su;Kim, Jong-Myoung;An, Won-Gun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.293-300
    • /
    • 2012
  • Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are important inflammatory mediators implicated in pathogenesis of inflammation and certain types of human cancers. The present study was designed to determine whether Red Ginseng (RG) could modulate $I{\kappa}B$-kinase, iNOS and COX-2 gene expression and immune responses in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS). RG extract suppressed the expression of LPS-induced $I{\kappa}B$, iNOS, COX-2, and immune responses in a dose-dependent manner. It also showed an anti-inflammatory effect by inhibiting NF-${\kappa}B$ immune response induced by LPS treatment. Inhibitory effect of RG on LPS-induced inflammation was mediated by suppressed phosphorylation of ERK, JNK and p38 through the regulation of the mitogen-activated protein kinase (MAPK) pathway leading to a decreased production of NO, iNOS, COX-2 and NF-${\kappa}B$. The results implied the role of RG as an inflammation regulator and its possible application for curing inflammatory diseases.

Cultivation Support System of Ginseng as a Red Ginseng Raw MaterialduringtheKoreanEmpire andJapaneseColonialPeriod (대한제국과 일제강점기의 홍삼 원료삼 경작지원 시스템)

  • Dae-Hui Cho
    • Journal of Ginseng Culture
    • /
    • v.5
    • /
    • pp.32-51
    • /
    • 2023
  • Because red ginseng was exported in large quantities to the Qing Dynasty in the 19th century, a large-scale ginseng cultivation complex was established in Kaesong. Sibyunje (時邊制), a privately led loan system unique to merchants in Kaesong, made it possible for them to raise the enormous capital required for ginseng cultivation. The imperial family of the Korean Empire promulgated the Posamgyuchik (包蔘規則) in 1895, and this signaled the start of the red ginseng monopoly system. In 1899, when the invasion of ginseng farms by the Japanese became severe, the imperial soldiers were sent to guard the ginseng farms to prevent the theft of ginseng by the Japanese. Furthermore, the stateled compensation mission, Baesanggeum Seongyojedo (賠償金 先交制度), provided 50%-90% of the payment for raw ginseng, which was paid in advance of harvest. In 1895, rising seed prices prompted some merchants to import and sell poor quality seeds from China and Japan. The red ginseng trade order was therefore promulgated in 1920 to prohibit the import of foreign seeds without the government's permission. In 1906-1910, namely, the early period of Japanese colonial rule, ginseng cultivation was halted, and the volume of fresh ginseng stocked as a raw material for red ginseng in 1910 was only 2,771 geun (斤). However, it increased significantly to 10,000 geun between 1915 and 1919 and to 150,000 geun between 1920 and 1934. These increases in the production of fresh ginseng as a raw material for red ginseng were the result of various policies implemented in 1908 with the aim of fostering the ginseng industry, such as prior disclosure of the compensation price for fresh ginseng, loans for cultivation expenditure in new areas, and the payment of incentives to excellent cultivators. Nevertheless, the ultimate goal of Japanese imperialism at the time was not to foster the growth of Korean ginseng farming, but to finance the maintenance of its colonial management using profits from the red ginseng business.

Market Trend of Health Functional Food and the Prospect of Ginseng Market (건강기능식품의 시장현황 및 인삼시장의 전망)

  • Lee, Jong-Won;Do, Jae-Ho
    • Journal of Ginseng Research
    • /
    • v.29 no.4
    • /
    • pp.206-214
    • /
    • 2005
  • The health function food law has been carried into effect from January 31, 2004 just after the proposal of 'a draft of a proposed law concerning the health function foods for the promotion of a nation health' on November 29, 2000 in Korea. After enforcement of health functional food law, there have been difficult market penetration with overall stagnancy of business activities and the current of health functional food within the country divided two groups. In standardized health functional foods the present condition, nutrition supplementary products (938 items) and red ginseng products (351 items) are prevalent and total 32 products are registered containing lactobacilli (297 items), glucosamine (295 items), ginseng (182 items), yeast(136 items) so on. In 2005, five products (products containing green tea extract, soybean protein, plant sterol, fructooligo sugar and Monascus sp. products are newly notified and raw material or component of total 21 products containing xylitol, teanin extract, sardine peptide are recognized as individual authorized health functional foods. Efficacies of ginseng are studied in many-sided researches but benefits of the ginseng in the health functional food law limited to 3 items (staminaresume, immune enhancement, nourishment robustness). To enlarge functionalities of ginseng it needs raw material and ingredient approval through data application to Korea Food and Drug Administration and this procedure acts as barrier of the functional food development in the ginseng industry. It is necessary to develop the authorized health functional foods for leading health functional food market in the future.

The Mass Balance of Protopanaxtriol Ginsenosides in Red Ginseng Process (홍삼제조과정 중 파낙사트리올계 진세노사이드의 물질균형)

  • Lee, Sang Myung
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.3
    • /
    • pp.223-228
    • /
    • 2015
  • This mass balance study about ginsenoside Rg1 and Re in Red ginseng processed from Fresh ginseng is useful to understand that herbal material sources of ginseng and raw material consumption in Red ginseng preparations. In our results, total molar amounts of ginsenoside Rg1, Re and their converts in Fresh ginseng, Red ginseng, and Red ginseng extract are substantially the same. The molar amounts of ginsenoside Rg1, Re (4.324, 2.880 μmol/g) as starting materials in Fresh ginseng are kept constant as total molar amounts (sum of starting and converts) in Red ginseng (4.264, 2.596 μmol/g) and Red ginseng extract (3.389, 3.129 μmol/g). This result means that protopanaxtriol type ginsenosides and their characteristic converts are not destroyed or inflowing in Red ginseng process. Therefore, it is important for quality assurance of Red ginseng preparations that the ratio between ginsenosides Rg1, Re and these converts is kept constant.

Effect of White Ginseng-Ejung-tang and Red Ginseng-Ejung-tang Water Extract on Production of Chemokines and IL-21 in LPS-induced RAW 264.7 Mouse Macrophages (LPS로 유발된 마우스 대식세포의 케모카인류 염증인자 생성에 미치는 백삼이중탕 및 홍삼이중탕의 영향비교)

  • Park, Wan Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.6
    • /
    • pp.795-801
    • /
    • 2013
  • The purpose of this study is to investigate effects of White Ginseng-Ejung-tang (EG) and Red Ginseng-Ejung-tang (ER) water extract on production of various cytokines such as interleukin (IL)-21, IL-25, IL-$28{\beta}$, erythropoietin (EPO), Exodus-2, monocyte chemotactic protein (MCP)-5, macrophage inflammatory protein (MIP)-$3{\alpha}$, MIP-$3{\beta}$, Fractalkine, and TARC in RAW 264.7 mouse macrophages stimulated by lipopolysaccharide (LPS). Levels of cytokines were measured by High-throughput multiplex bead array cytokine assay based on xMAP (multi-analyte profiling beads) technology. ER significantly decreased levels of IL-21, IL-25, IL-$28{\beta}$, EPO, Exodus-2, MCP-5, MIP-$3{\alpha}$, MIP-$3{\beta}$, TARC, and fractalkine for 24 h incubation at the oncentrations of 25 and 100 ${\mu}g/mL$ in LPS-induced RAW 264.7 (P < 0.05). But EG did not show any significant effect. These results suggest that ER has anti-inflammtory property related with its inhibition on the production of IL-21, IL-25, IL-$28{\beta}$, and chemokines such as EPO, MCP-5, MIP-$3{\alpha}$, MIP-$3{\beta}$, Fractalkine, Exodus-2, and TARC in LPS-induced macrophages.

Chemical diversity of ginseng saponins from Panax ginseng

  • Shin, Byong-Kyu;Kwon, Sung Won;Park, Jeong Hill
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.287-298
    • /
    • 2015
  • Ginseng, a perennial plant belonging to the genus Panax of the Araliaceae family, is well known for its medicinal properties that help alleviate pathological symptoms, promote health, and prevent potential diseases. Among the active ingredients of ginseng are saponins, most of which are glycosides of triterpenoid aglycones. So far, numerous saponins have been reported as components of Panax ginseng, also known as Korean ginseng. Herein, we summarize available information about 112 saponins related to P. ginseng; >80 of them are isolated from raw or processed ginseng, and the others are acid/base hydrolysates, semisynthetic saponins, or metabolites.