• Title/Summary/Keyword: rational functions

Search Result 216, Processing Time 0.045 seconds

Extraction of rational functions by forced vibration method for time-domain analysis of long-span bridges

  • Cao, Bochao;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.561-577
    • /
    • 2013
  • Rational Functions are used to express the self-excited aerodynamic forces acting on a flexible structure for use in time-domain flutter analysis. The Rational Function Approximation (RFA) approach involves obtaining of these Rational Functions from the frequency-dependent flutter derivatives by using an approximation. In the past, an algorithm was developed to directly extract these Rational Functions from wind tunnel section model tests in free vibration. In this paper, an algorithm is presented for direct extraction of these Rational Functions from section model tests in forced vibration. The motivation for using forced-vibration method came from the potential use of these Rational Functions to predict aerodynamic loads and response of flexible structures at high wind speeds and in turbulent wind environment. Numerical tests were performed to verify the robustness and performance of the algorithm under different noise levels that are expected in wind tunnel data. Wind tunnel tests in one degree-of-freedom (vertical/torsional) forced vibration were performed on a streamlined bridge deck section model whose Rational Functions were compared with those obtained by free vibration for the same model.

A Study on the Theoretical Background of the Multiplication of Rational Numbers as Composition of Operators (두 조작의 합성으로서의 유리수 곱의 이론적 배경 고찰)

  • Choi, Keunbae
    • East Asian mathematical journal
    • /
    • v.33 no.2
    • /
    • pp.199-216
    • /
    • 2017
  • A rational number as operator is eventually that it is considered a mapping. Depending on how selecting domain (the target of operation by rational number) and codomain (including the results of operations by rational number), it is possible to see the rational in two aspects. First, rational numbers can be deal with functions if we choose the target of operation by rational number as a number field containing rationals. On the other hand, if we choose the target of operation by rational number as integral domain $\mathbb{Z}$, then rational numbers can be regarded as partial functions on $\mathbb{Z}$. In this paper, we regard the rational numbers with a view of partial functions, we investigate the theoretical background of the relationship between the multiplication of rational numbers and the composition of rational numbers as operators.

APPROXIMATION IN LIPSCHITZ ALGEBRAS OF INFINITELY DIFFERENTIABLE FUNCTIONS

  • Honary, T.G.;Mahyar, H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.629-636
    • /
    • 1999
  • We introduce Lipschitz algebras of differentiable functions of a perfect compact plane set X and extend the definition to Lipschitz algebras of infinitely differentiable functions of X. Then we define the subalgebras generated by polynomials, rational functions, and analytic functions in some neighbourhood of X, and determine the maximal ideal spaces of some of these algebras. We investigate the polynomial and rational approximation problems on certain compact sets X.

  • PDF

Transfer function approximation of motion-induced aerodynamic forces with rational functions

  • Kirch, Arno;Peil, Udo
    • Wind and Structures
    • /
    • v.14 no.2
    • /
    • pp.133-151
    • /
    • 2011
  • For a detailed investigation of the dynamic behaviour of slender bridges under wind action especially the motion-induced fluid forces should be available not only for harmonic motions but also for more general ones. If linear transfer behaviour is assumed, the force-displacement relation for almost arbitrary motions can be handled in the frequency domain using aerodynamic transfer functions. In aerospace engineering as well as in bridge engineering, these functions are usually approximated by special kinds of complex-valued rational functions which depend on complex frequencies. The quality of this approximation is evaluated for several bridge cross sections in this article. It is shown that rational functions are for some sections scarcely suitable to realistically represent the transfer behaviour of motion-induced aerodynamic forces for arbitrarily complex frequencies.

Partial Fraction Expansions for Newton's and Halley's Iterations for Square Roots

  • Kouba, Omran
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.3
    • /
    • pp.347-357
    • /
    • 2012
  • When Newton's method, or Halley's method is used to approximate the pth root of 1-z, a sequence of rational functions is obtained. In this paper, a beautiful formula for these rational functions is proved in the square root case, using an interesting link to Chebyshev's polynomials. It allows the determination of the sign of the coefficients of the power series expansion of these rational functions. This answers positively the square root case of a proposed conjecture by Guo(2010).

AN INVERSE HOMOGENEOUS INTERPOLATION PROBLEM FOR V-ORTHOGONAL RATIONAL MATRIX FUNCTIONS

  • Kim, Jeon-Gook
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.717-734
    • /
    • 1996
  • For a scalar rational function, the spectral data consisting of zeros and poles with their respective multiplicities uniquely determines the function up to a nonzero multiplicative factor. But due to the richness of the spectral structure of a rational matrix function, reconstruction of a rational matrix function from a given spectral data is not that simple.

  • PDF

Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams (회전하는 보의 유한요소해석을 위한 유리형상함수의 확장)

  • Kim, Yong-Woo;Jeong, Jae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.573-578
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfies the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfies the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beam.

  • PDF