• Title/Summary/Keyword: ratio transformer

Search Result 397, Processing Time 0.026 seconds

Evaluation Technique for Ratio Error and Phase Displacement of Current Transformer Comparator (전류변성기 비교기의 비오차 및 위상오차 평가기술)

  • Kim, Yoon-Hyoung;Han, Sang-Gil;Jung, Jae-Kap;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.437-443
    • /
    • 2008
  • We have developed an evaluation technique for both ratio error and phase displacement of current transformer (CT) comparator by using the precise standard capacitors and resistors. By applying this technique to equivalent circuit of CT comparator evaluation system, we can obtain the calculated and measured ratio errors (or phase displacements) in the CT comparator. Thus we can evaluate ratio errors and phase displacement of CT comparator by comparing the calculated and measured ratio errors (or phase displacements). The method was applied to CT comparator under test with the ratio errors and phase displacement ranges of $0{\sim}{\pm}10%$ and $0{\sim}{\pm}7.5$ crad, respectively. Finally we have compared the ratio error and phase displacement of the CT comparator obtained in this method with specifications of two companies.

Interrupting characteristics of the transformer superconducting fault current limiter

  • Hwang, S.H.;Choi, H.W.;Jeong, I.S.;Choi, H.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.40-44
    • /
    • 2017
  • This paper analyzed the fault current limiting characteristics of the previously proposed transformer superconducting fault current limiter (TSFCL) interruption system according to its transformer type. The TSFCL interruption system is an interruption technology that combines a TSFCL, which uses a transformer and a superconductor, and a mechanical DC circuit breaker. This technology first limits the fault current using the inductance of the transformer winding and the quench characteristics of the superconductor. The limited fault current is then interrupted by a mechanical DC circuit breaker. The magnitude of the limited fault current can be controlled by the quench resistance of the superconductor in the TSFCL and the turns ratio of the transformer. When the fault current is controlled using a superconductor, additional costs are incurred due to the cooling vessel and the length of the superconductor. When the fault current is controlled using step-up and step-down transformers, however, it is possible to control the fault current more economically than using the superconductor. The TSFCL interruption system was designed using PSCAD/EMTDC-based analysis software, and the fault current limiting characteristics according to the type of the transformer were analyzed. The turns ratios of the step-up and step-down transformers were set to 1:2 and 2:1. The results were compared with those of a transformer with a 1:1 turns ratio.

Electrical Characteristics of Piezoelectric Transformer using Low Temperature Sintering PCW-PMN-PZT Ceramics (저온소결 PCW-PMN-PZT 세라믹스를 적용한 압전변압기의 전기적 특성)

  • Chung, Kwang-Hyun;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.350-356
    • /
    • 2006
  • In this study, piezoelectric transformer was manufactured at the sintering temperature of $950^{\circ}C$, and then the feasibility of application to low temperature sintering piezoelectric transformers was investigated by evaluating the electrical characteristics of it. The voltage ratio of piezoelectric transformer showed the maximum value at the resonant frequency of input part, and increased according to the increase of load resistance. The output power and efficiency of piezoelectric transformer showed the superior properties when the output impedance of it coincides with the load resistance. Piezoelectric transformer manufactured at the low temperature of $950^{\circ}C$ showed the heat generation less than $20^{\circ}C$ at the output power of 30 W, and stable driving characteristics.

Method for improving the accuracy of a voltage transformer considering hysteresis characteristics (히스테리시스 특성을 고려한 전압 변성기 오차 개선 방법)

  • Kang, Yong-Cheol;Lee, Byung-Eun;Park, Jong-Min;Cha, Sun-Hee;Jang, Sung-Il;Kim, Yong-Guen
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.208-209
    • /
    • 2006
  • Voltage Transformer is used to transform high voltage into low voltage to input signal of protection relay. Most of the Voltage Transformers use the iron core which maximizes the flux linkage. The ratio of the Voltage Transformer depends on the transformer turns ratio. The current which flows in the Voltage Transformer has non-linear characteristic caused by hysteresis of the iron core, it causes a voltage loss in the winding impedances which makes measurement errors. This paper describes an error compensation method considering hysteresis characteristic. The proposed compensation method improves error by calculating the primary current from the exciting current of the hysteresis loop in the Voltage Transformer, compensating the voltage loss.

  • PDF

Design of a Piezoelectric Transformer with Crescent-Shaped Input type (Crescent-Shaped 입력형 압전변압기의 설계)

  • Jung, Sung-Su;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.367-370
    • /
    • 2004
  • This paper present a new disk-type piezoelectric transformer. The input side of the transformer has a crescent-shaped electrode and the output side has a focused poling direction. The piezoelectric transformers operated in each transformer's resonance vibration mode. The electrodes and poling directions on commercially available piezoelectric ceramic disks were designed so that the planar or shear mode coupling factor $(k_p,\;k_{15})$ becomes effective rather than the transverse meed coupling factor $(k_{31})$. A single layer prototype transformer, 26[m] in diameter and 2.0[mm] thickness, was fabricated, such as step-up ratio, power transformation efficiency and temperature were measured.

  • PDF

A Study on Core shape optimization to Improve The Efficiency of High Frequency Transformer for Inverter (인버터용 고주파 변압기의 효율 향상을 위한 코어 형상 최적화 설계에 대한 연구)

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.4
    • /
    • pp.29-35
    • /
    • 2014
  • The purpose of high frequency transformer in the inverter is to reduce the voltage and current stresses of switch components when it operates at the large conversion ratio. But the loss of transformer is the major contributor in the efficiency of inverter. This paper presents the method of core design to minimize the loss of transformer. The total loss of transformer is minimized by adjusting the effective cross-sectional areas of core. The component ratio of losses are compared by using the finite-element analysis.

The Characteristics of $\lambda$ Vibration-Mode Type Piezoelectric Transformer ($\lambda$ 진동로드형 압전 변압기의 특성)

  • 정수현;이종섭;홍종국;박철현;이강원;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.327-330
    • /
    • 1999
  • In this paper, the electrical characteristics of λ vibration-mode piezoelectric transformer for applying to CCFL driving inverter was investigated. Piezoelectric transformer was made of PZT - PMN -0.5wt% N $b_2$ $O_{5}$ composition. As a results of the electrical characteristics of piezoelectric transformer, when applied voltage was 35[ $V_{rms}$] in 100[k$\Omega$] load resistance, output voltage was about 510[ $V_{rms}$] and output power was more than 2[W]. As output power increased, step-up ratio and temperature was very stable until output power was 2.5(W). Also, Efficiency was maximum in 70[k$\Omega$] load resistance, and about 89[%]. Also, when piezoelectric transformer was continuously driven for 10[hrs], output voltage and temperature change ratio was fess than 10[%], and very stable. Conclusively, piezoelectric transformer fabricated in this paper can be applied to piezoelectric inverter for CCFL driving.g.

  • PDF

Analysis on Hysteresis Characteristics of a Transformer Type Superconducting Fault Current Limiter (변압기형 초전도전류제한기의 히스테리시스 특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.164-168
    • /
    • 2010
  • The transformer is expected to be an essential component of a superconducting fault current limiter (SFCL) for both the increase of its voltage ratings and the simultaneous quench due to different critical current between high-$T_C$ superconducting (HTSC) elements comprising the SFCL. However, in order to perform the effective current limiting operation of the SFCL, the design for the SFCL considering the hysteresis characteristics of the iron core is required. In this paper, the influence of the hysteresis characteristics of the iron core comprising the transformer type SFCL on its current limiting characteristics was investigated. Through the comparative analysis on the hysteresis curves due to the ratio of the turn number between the 1st and the 2nd windings of the transformer, the proper design condition for the ratio of the turn number to achieve the effective current limiting operation of the transformer type SFCL could be obtained.

A Three-Winding Transformer Protective Relaying Algorithm Based on Flux Linkages Ratio (쇄교자속비를 이용한 3권선 변압기 보호 알고리즘)

  • Kang, Y.C.;Lee, B.E.;Jin, E.S.;Won, S.H.;Lim, U.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.341-344
    • /
    • 2003
  • This paper proposes a tree-winding transformer protective relaying algorithm based on the ratio of increment of flux linkages (RIFL). The RIFL of the two windings is equal to the turns ratio for all operating conditions except an internal faults. For a single-phase transformer and three-phase transformer containing the wye-connected windings, the increments of flux linkages are calculated. for a three-phase transformer containing the delta-connected windings, the difference of the increments of flux linkages between the two phases are calculated using the line currents, because the winding currents are practically unavailable. Their ratios are compared with the turns ratio. The results of various tests show that the algorithm successfully discriminates internal faults from normal operation conditions such as magnetic inrush, overexcitation and external faults. The algorithm can not only detect internal winding faults, but reduce the operating time of a relay.

  • PDF

Development of a Calculable Potential Transformer with Wide Ratio Error (광범위 비오차를 갖는 계산형 전압변성기의 개발)

  • Kwon, Sung-Won;Jung, Jae-Kap;Lee, Sang-Hwa;Kim, Myung-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1017-1021
    • /
    • 2008
  • A calculable potential transformer(PT) with nominal ratio error in wide range of -10% to +10% has been developed on basis of theoretical calculation of ratio error by the number of windings. The developed PT can be used to evaluate the linearity and accuracy of the PT comparator by comparing both the theoretical and experimental values of the PT which have exactly same ratio errors in nominal and calculated values. The PT has been applied for calibration and correction of the PT comparator up to wide ratio error range of -10% to +10%. This portable PT is very convenient to carry to the power industry for the on-site calibration of the PT comparator.