• Title/Summary/Keyword: ratio of nutrient and water uptake

Search Result 26, Processing Time 0.026 seconds

Studies on the Growth Characters and Nutrient Uptake Related to Source and Sink by Cool Water Temperature at Reproductive Growth Stage III. Influence of Growth Characters and Nutrient Uptake Related to Panicle by Different Water Temperature and Water Depth (생식생장기 냉수온이 벼의 Source와 Sink 관련형질 및 양분흡수에 관한 연구 III. 관개수온과 수심이 수의 관련제형질 및 양분흡수에 미치는 영향)

  • 최수일
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.2
    • /
    • pp.242-248
    • /
    • 1986
  • To study the effect of cold water irrigation at the reproductive growth stage of rice plants on several growth characters related to source and sink and nutrient uptake, the present experiment was carried out under the different conditions of water temperature and water depth. Deep irrigation with normal temperature water increased culm length, panicle length and panicle exsertion but with cold water resulted adversely. Most sensi-tive response in 5 cm water-depth appeared at reduction division stage and in 20 cm depth at panicle formation stage. Secondary branches and spikelets were increased in number by deep irrigation with normal temperature water, but decreased and degenerated by deep irrigation with cold water at panicle formation stage resulting in high spikelet sterility and low grain filling. Deep irrigation with normal temperature water increased the contents of total nitrogen, phosphate, potassium and silicate in leaf blades, branches and chaff. However, cold water irrigation reduced the uptake of phosphate, potassium and silicate except nitrogen particularly in deep irrigation. Ratios of phosphate, potassium and silicate to total nitrogen content were decreased by cold water irrigation. Branches seemed to have higher requirements for phosphate, potassium and silicate than leaf blades and chaff. Silicate-to-total nitrogen ratio in leaf blades, branches and chaff had significant correlations with yield showing closer relationship between yield and the ratio of silicate to total nitrogen in branches in particu-lar.

  • PDF

Studies on the Growth Characters and Nutrient Uptake Related to Source and Sink by Cool Water Temperature at Reproductive Growth Stage IV. Influence of Growth Characters and Nutrient Uptake of Leaf Blade, Rachis Branches and Chaff by Nitrogen, Phosphate, Potassium and Silicate (생식생장기 냉수온이 벼의 Source와 Sink 관련형질 및 양분흡수에 미치는 연구 IV. 3요소와 규산시용량이 생육 및 엽신. 지경, 영의 양분흡수에 미치는 영향)

  • 최수일;황창주
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.3
    • /
    • pp.326-335
    • /
    • 1986
  • In cold water irrigation, some growth and yield were decreased by heavy application of nitrogen but in-creased by heavy application of phosphate, potassium and silicate. Among growth characters, number of spikelets per panicle and grain filling ratio were affected significantly. Cold damage in number of spikelets, spikelet sterility and degeneration of spikelet and branch could be reduced by increasing application amount of phosphate, potassium and in particular silicate. Number of spikelets per branch was closely related with number of spikelets per secondary branches. Number of abortive grains and immature grains had negative correlations with yield and could be reduced by heavy application of phosphate, potassium and silicate. Heavy nitrogen application led to high total nitrogen content and restrained the uptake of phosphate, potassium and silicate. However, adverse results were showed by heavy application of phosphate, potassium and silicate. Inorganic element contents in branches were lower than those in leaf blades, but higher than those in chaff. Branches showed little differences in inorganic element contents between heading stage and maturing stage. Inorganic element contents in branches were considered to be influenced by those in leaf blades and to affect those in chaff. Some growth characters related to source and sink, such as degeneration of branches and spike-lets, sterility ratio, ripening ratio, and yield had closer relationship with nutrient contents in branches than those in leaf blades and chaff. The results demonstrated that the rachis branch not only was a transport pathway of nutrient but also would play an important role in accumulating substances in panicles.

  • PDF

Composition of Optimal Nutrient Solution for Single-stemmed Rose 'Red velvet' in a Closed Aeroponic System

  • Kang Mu Jang;Lee Joo Hyun;Lee Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.174-181
    • /
    • 2005
  • Experiments were carried out to develop an optimal nutrient solution for the single-stemmed rose (Rosa hybrida L.) 'Red velvet' in a closed aeroponic system. Plants were grown in 1/3, 1/2, 1, or 3/2 strength of the nutrient solution of National Horticultural Research Station in Japan (NHRS). Significantly less changes of pH and EC ($dS{\cdot}m^{-1}$) in the drainage were observed in 1/2 strength treatment as compared to other treatments. The $NO_3-N$, K, Ca, and Mg concentrations in the drainage solution of 1/2 strength treatment were maintained at optimal levels. These results indicated that the rose uptakes of both nutrients and water was more stable than those in other concentration. The concentration of macronutrients in nutrient solution were adjusted based on the ratio of nutrient:water (n/w) taken up by plants grown in the 1/2 strength solution. The composition of the new solution (classified the University of Seoul (UOS) solution) was as follow; $NO_3-N$ 8.8, $NH_4-N$ 0.67, P 2.0, K 4.8, Ca 4.0, Mg 2.0 $me{\cdot}L^{-1}$. To further evaluate new solution on crop growth, the rose 'Red Velvet' was grown again in l/2, 1, and 2 strength UOS solution to compare with 1.0 strength PBG (proefstion voor bloemisterij en glasgroenpe) solution. Overall the plant growth, including the stem length and number of five-leaflet leaves was higher in 1.0 strength of UOS solution than other treatments. Results presented in this study indicate that the nutrients in the UOS solution are well balanced for the single-stemmed rose in the closed aeroponic system.

Effects of mixing/aeration ratio and SRT on nutrient removal in SBR process (연속회분식반응조 공정에서 교반/폭기비와 SRT가 영양염류제거에 미치는 영향)

  • Jeon, Seok-Jun;Kim, Han-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.291-301
    • /
    • 2002
  • In this study, nutrients treatment by sequencing batch reactors(SBR) was performed. Nitrogen and phosphorus removal efficiencies were evaluated by changing SRT and mixing/aeration ratio. Not only nitrogen but also phosphorus removal patterns were investigated through track studies on 1 cycle. As SRT was fixed and mixing/aeration ratio was changed, maximum nitrogen removal efficiency was 87.6% at mixing/aeration ratio 0.67. Phosphorus removal efficiencies were more than 85.5% except no mixing condition. As mixing/aeration ratio was fixed and SRT was changed, nitrogen removal efficiencies were 70.5~79.8%, which represented slight changes, while phosphorus removal efficiencies were 49.0~97.3%, which represented sharply decreasing tendency at less than 20 day. Both phosphorus release rate k and maximum phosphorus release rate $P_{max}/M$ were are decreased as SRT was decreased, but they were not affected by mixing/aeration ratio. It was found that there is a linear relationship between ortho-phosphate uptake and maximum ortho-phosphate release.

Comparison of Biological Phosphorus Removal Characteristics between A/O and A2/O Process (A/O 및 A2/O공정의 생물학적 인제거 특성비교)

  • Kim, Kwang-Soo;Seo, Gyu-Tae;Lee, Kyung-Ho;Kim, Nag-Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.123-130
    • /
    • 2002
  • Bench scale experiments were carried out with two biological nutrient removal(BNR) units, A/O and $A^2O$ processes, to investigate the behavior of phosphorus in the system and to compare the characteristics of phosphorus removal in two BNR processes. To achieve this goal, COD/T-P and COD/TKN ratios of the influent was varied in the range of 23~64 and 5~24, respectively. In A/O process, influent COD/T-P ratio should be kept higher than 44mg/L to meet the final effluent T-P concentration lower than 1mg/L and in $A^2/O$ process, influent COD/T-P and COD/TKN ratios higher than 56 and 10, respectively, were required for good phosphorus release and uptake with no influence of nitrate nitrogen in return sludge. At this conditions, the rate of phosphorus release in the anaerobic basin should be kept higher than 0.1 kg S-P/kg MLVSS d In A/O process, the phosphorus content of anaerobic and aerobic sludges was increased as SRT of total system was becoming longer resulting in decreasing the difference of phosphorus content between two sludges while phosphorus release in anaerobic basin and phosphorus uptake in aerobic basin was not incident. In $A^2/O$ process, the phosphorus content of anaerobic and aerobic sludges were not increased with higher SRT of total system due to the relatively high nitrate concentration in return sludge. However, the difference of phosphorus content between anaerobic and aerobic sludges was incident when phosphorus release and uptake was observed.

Study on Nutrient Balance in Paddy Field of Fluvio-Marine Deposit (하해혼성(河海混成) 논토양(土壤)의 양분수지(養分收支)에 관한 연구)

  • Yoo, Chul-Hyun;Yang, Chang-Hyu;Kang, Seung-Weon;Han, Sang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.5
    • /
    • pp.253-263
    • /
    • 2002
  • To test for the effect of applied fertilizer and nutrients on uptake and transport for paddy rice, two paddy field trials were conducted with Dongjinbyeo in degenerated salt paddy field of Jeonbuk series from 1999 to 2000. After experiment, soil acidity, content of organic matter phosphate, silicate, potassium, calcium, and total nitrogen was increased by application of fresh cattle manure(FCM). Content of Nitrogen in soil layer leached inorganic nitrogen $NO_3$ was higher that that of $NH_4$ and was high in treatment of FCM. Content of $PO_4$ was higher in FCM than other treatments. But content of potassium was in high control. During the growth of rice plant, the amount of water consumption was 477mm. The amount of supplied nitrogen was high in treatment of no nitrogen(NN), 20% reduced application of LCU(LCU-20%), and no fertilizer. In case of phosphate, the supplied amount was more than the consumed amount with the exception of treatment "no phosphate(NP) and no fertilizer(NF)". In case of potassium, the consumed amount was more than the supplied amount in all treatments. The amount of applied nitrogen in the nutrient infiltrated water was high in treatment soil test(ST), C+FCM+Si(Silicate) and the ratio of recovered nitrogen was high in 20% reduced application of LCU. The amount of applied phosphate in the nutrient infiltrated water was high in FCM and that of applied potassium was high in 20% reduced application of LCU. Nitrogen use efficiency of paddy rice was high in 20% reduced application of LCU and use efficiency of phosphate and potassium was high in C+Si(Silicate). Grain yield of rice was high in order of 20% reduced application of LCU>C+Si=C+FCM+Si>C+FCM.

Removal of Nitrogen and Phosphorus from Municipal Wastewater by a Pilot-scale BNR Process (파이롯트 규모의 BNR 공법에 의한 도시하수의 질소 및 인 제거)

  • Kim, Young-Chur
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.589-599
    • /
    • 2007
  • This study was conducted to investigated the removal efficiency of BOD and nutrient for the treatment of low strength municipal wastewater by a biological nutrient removal system. In this experiment, the effect of operating parameter including HRT of 7.0hr, BOD/TN ratios of 2.62~4.08, internal recycle of 50~300%, and return sludge of 50~100%, were studied during winter season. Efficiencies of organic matter and T-P removal and denitrification were not significantly affected by the change of temperature in winter season. However, the specific nitrification rate and nitrification efficiency decreased at low temperature. Besides, denitrification efficiencies increased with increasing BOD/TN ratios. It was also found that the internal recycle and return sludge ratio below 50% is required for the effective denitrification of low strength municipal wastewater. With operating mode 4 of the optimum, the effluent BOD, T-N and T-P concentration were obtained to average 5.8, 14.6, and 0.84 mg/L, respectively. The temperature-activity coefficient (${\theta}$) of specific nitrification rate, specific denitrification rate and specific phosphorus uptake rate were obtained 1.044, 1.017, 1.028, respectively.

Nutrient Uptake by Reeds Growing in Subsurface-flow Wetland Constructed to Purify Stream Water (하천수정화 여과습지에서 성장하는 갈대의 영양염류 흡수량)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.1
    • /
    • pp.89-99
    • /
    • 2006
  • The growth and biomass of reeds(Phragmites australis) growing in a subsurface treatment wetland system were investigated from April 2003 to October 2003. Nitrogen(N) and phosphorous(P) concentrations in above-ground(AG) and below-ground(BG) tissues of reeds were examined and the removal rate of N and P by reeds were analyzed. The system, 29 m in length, 9 m in width and 0.65 m in depth, was constructed in June 2001 on a floodplain in the down reach of the Kwangju Stream in Korea in order to purify polluted water of the stream. A bottom layer of 45 cm in depth was filled with crushed granites(15~30 mm in diameter) and a middle layer of 10 cm in depth was filled with pea pebbles(10 mm in diameter). An upper layer of 5 cm contained course sand. Reeds were transplanted on the surface of the system, which were dug out of natural wetlands, and their shoots were trimmed 40 cm in height. The height and density of the shoots averaged 237.7 cm and 244.0 shoot/$m^2$, respectively, when the reeds grew fully. The maximum biomass of AG and BG tissues were 1,964 and 1,577 g/$m^2$, respectively, and the AG : BG ratio of biomass was 1.26. Mean AG and BG dry weights were recorded as 1,355 and 748 g/$m^2$, respectively. The AG and BG tissue concentrations of N averaged 12.37 and 10.01 mg/g, respectively, and those of P 2.37 and 2.03 mg/g, respectively. Inflow to the system averaged 40 $m^3$/day. The concentrations of total nitrogen(T-N) in influent and effluent were 8.4 mg/L and 3.2 mg/L, respectively, and those of total phosphorous(T-P) were 0.73 and 0.38 mg/L, respectively. The total removal of T-N and T-P by the system during the investigation period averaged 140.2 and 9.7 g/$m^2$, respectively, and the total uptake of N and P by the reeds were calculated as 24.39 and 4.73 g/$m^2$, respectively. Average removals of about 17% of N and about 49% of P by reeds were recorded. The N and P concentrations in AG tissues were significantly different among the three zones of the system:near to inflow(St1), in the middle of system(St2), and near to outflow(St3). The N and P concentrations in BG tissues were also significantly different among St1, St2 and St3. N and P concentrations in AG and BG tissues of reeds growing in St1 were higher than those in St2 and St3. The height and density of shoots of reeds in St1 were larger than those in St2 and St3. Significant amounts of N and P in the influent were taken up by reeds in St1.

Distributional characteristics of phytoplankton and nutrient limitation during spring season in Jinhae Bay (춘계 진해만에서 식물플랑크톤 증식과 제한영양염 분포특성)

  • Son, Moonho;Kim, Dongseon;Baek, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3345-3350
    • /
    • 2014
  • We investigated to assess the relationships between the major nutrients and phytoplankton dynamics during the spring season in 2010 and 2011 at 23 stations in Jinhae Bay, Korea. The bay is divided into four different zones based on pollutant sources and geographical characteristics. Nutrient limitation (>80%) was significant in Zone II, which is located in central bay and is influenced by the water well mixed from outer bay. The limited nutrient was followed in Zone III and IV that was occupying between 17% and 83%. However, the low levels are being kept below 35% in Zone I, which is characterized by the semi-enclosed eutrophic area of Masan and Haegam bays. Based on the PCA (principle component analysis) analysis, the nitrogen (N) sources in 2010 were particularly dominant and it may be due to the water mixing and wastewater formed from bottom layers and sewage. In 2011, major nutrients including nitrogen, silicon and phosphorus were dominant in the bay and are supplied by the river discharge after rainfalls with low salinity conditions. In particular, the N nutrients being supplied in 2010 are correlated with pennate diatoms Pseudo-nitzchia spp. and is not related to the phytoplankton population densities in 2011. The present study suggests that N sources play an important role in the proliferation of diatom, and the rapid nutrient uptakes by them are potential nutrient limitation factors in the bay.

Development of Optimal Nutrient Solution of Tomato(Lycopercicon esculentum Mill.) in a Closed Soilless Culture System (순환식 수경재배에 적합한 토마토 배양액 개발)

  • Yu, Sung-Oh;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.203-211
    • /
    • 2005
  • The experiment was conducted to investigate the nutrition absorption pattern in the growth stages and develope the optimal nutrient solution hydroponically grown the tomato in closed substrate culture system with the nutrient solution of National Horticultural Research Station in Japan into 1/2S, 1 S, and 2S. When plant was grown in 1/2 S, the growth and yield were high and the pH and EC in the rooting zone were stable. Suitable composition of nutrient solution for tomato was $NO_3-N$ 7.1, $PO_{4}$-P 2.1, K 4.0, Ca 3.1, Mg 1.2, and $SO_{4}-S\;1.2\;me{\cdot}L^{-1}$ in the early growth stage and $NO_3-N$ 6.5, $PO_4-P$ 2.3, K 3.4, Ca 3.1, Mg 1.1, and $SO_4-S\;1.1\;me{\cdot}L^{-1}$ in the late growth stage by calculating a rate of nutrient and water uptake. To estimate the suitability for the nutrient solution of tomato in a development of optimum nutrient solution of tomato developed by Wonkwang university in korea (WU), plant was grown in perlite substrate supplied with different solution and strengths(S) by research station for greenhouse vegetable and floricultuin in the Netherlands (Proefstation voor tuinbouw onder glas te Naaldwijk; PTG) of 1/2 S, 1 S and 2 S, respectively, The growth was good at the PTG and WU of 2 S in early growth stage, and at the WU 2S in late growth stage. The highest yield of tomato obtained in the WU of 2 S, although blossom-end rot was appeared in all treatments. pH and EC in root zone of WU of 2 S were stable during the early and late growth stage. Therefore when plant was grown in WU of 2 S, N and P content in the nutrient solution need to low, according N and P content of their leaves were high in WU of 2 S.