• Title/Summary/Keyword: ratio of deterioration

Search Result 450, Processing Time 0.029 seconds

An Effects of Lateral Reinforcement of High-Strength R/C Columns Subjected to Reversed Cyclic and High-Axail Force (고축력과 반복횡력을 받는 고강도 R/C기둥의 횡보강근 효과)

  • 신성우;안종문
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.3-10
    • /
    • 1999
  • Earthquake resistant R/C frame structures are generally designed to prevent the columns from plastic hinging. R/C columns under higher axial load or strong earthquake showed a brittle behavior due to the deterioration of strength and stiffness degradation. An experimental study was conducted to examine the behavior and to find the relationship between amounts of lateral reinforcements and compressive strength of ten R/C column specimens subjected to reversed cyclic lateral load and higher axial load. Test results are follows : An increase in the amount of lateral reinforcement results in a significant improvement in both ductility and energy dissipation capacities of columns. R/C columns with sub-tie provide the improved ductility capacity than those with closely spaced lateral reinforcement only. While the load resisting capacity of the high strength R/C columns is higher than the normal strength concrete columns under both an identical ratio of lateral reinforcement, however the ductility capacity of high strength R/C columns is decreased considerably. Therefore, the amounts of lateral reinforcement must be designed carefully to secure the sufficient ductility and economic design of HSC columns under higher axial load.

Analysis of Electrical Characteristics of Low Temperature and High Temperature Poly Silicon TFTs(Thin Film Transistors) by Step Annealing (스텝 어닐링에 의한 저온 및 고온 n형 다결정 실리콘 박막 트랜지스터의 전기적 특성 분석)

  • Lee, Jin-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.525-531
    • /
    • 2011
  • In this paper, experimental analyses have been performed to compare the electrical characteristics of n channel LT(low temperature) and HT(high temperature) poly-Si TFTs(polycrystalline silicon thin film transistors) on quartz substrate according to activated step annealing. The size of the particles step annealed at low temperature are bigger than high temperature poly-Si TFTs and measurements show that the electric characteristics those are transconductance, threshold voltage, electric effective mobility, on and off current of step annealed at LT poly-Si TFTs are high more than HT poly-Si TFT's. Especially we can estimated the defect in the activated grade poly crystalline silicon and the grain boundary of LT poly-Si TFT have more high than HT poly-Si TFT's due to high off electric current. Even though the size of particles of step annealed at low temperature, the electrical characteristics of LT poly-Si TFTs were investigated deterioration phenomena that is decrease on/off current ratio depend on high off current due to defects in active silicon layer.

A Study on the Tensile Performance Change of Polyurea Waterproof Membrane Coat by Amount of Carbon Milled Fiber (탄소섬유길이 및 혼입량에 따른 폴리우레아 도막방수재의 인장성능 변화 연구)

  • Park, Jin-Sang;Choi, Su-Young;Park, Wan-Goo;Kim, Dong-Bum;Kim, Byoung-Il;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.242-243
    • /
    • 2017
  • Despite its excellent properties, polyurea coating waterproofing material is exposed to sunlight when it is applied to the exterior wall of concrete by exposed waterproofing method such as a roof of a building, resulting in a problem of causing a large deterioration in performance compared to initial properties. The purpose of this study is to investigate the effect of carbon fiber incorporation on the performance of carbon fiber - reinforced polyureas and to study the optimum carbon fiber length and content respectively. Result of the study confirmed that the performance of the carbon fiber was improved by 2% or more, and the carbon fiber length was 30 ㎛ and the mixing ratio was 3%. It is expected that stable durability can be secured when manufacturing fiber-incorporated polyureas.

  • PDF

Effectiveness of seismic isolation in a reinforced concrete structure with soft story

  • Hakan Ozturk;Esengul Cavdar;Gokhan Ozdemir
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.405-418
    • /
    • 2023
  • This study focused on the effectiveness of seismic isolation technique in case of a reinforced concrete structure with soft story defined as the stiffness irregularity between adjacent stories. In this context, a seismically isolated 3-story reinforced concrete structure was analyzed by gradually increasing the first story height (3.0, 4.5, and 6.0 m). The seismic isolation system of the structure is assumed to be composed of lead rubber bearings (LRB). In the analyses, isolators were modeled by both deteriorating (temperature-dependent analyses) and non-deteriorating (bounding analyses) hysteretic representations. The deterioration in strength of isolator is due to temperature rise in the lead core during cyclic motion. The ground motion pairs used in bi-directional nonlinear dynamic analyses were selected and scaled according to codified procedures. In the analyses, different isolation periods (Tiso) and characteristic strength to weight ratios (Q/W) were considered in order to determine the sensitivity of structural response to the isolator properties. Response quantities under consideration are floor accelerations, and interstory drift ratios. Analyses results are compared for both hysteretic representations of LRBs. Results are also used to assess the significance of the ratio between the horizontal stiffnesses of soft story and isolation system. It is revealed that seismic isolation is a viable method to reduce structural damage in structures with soft story.

According to Water Cement Ratio and Internal Temperature and Humidity, An Analytical Study on the Carbonation of Long-Term Concrete (물 시멘트비와 이산화탄소 농도에 따른 콘크리트의 장기 탄산화에 관한 해석적 연구)

  • Lee, Jun-Hae;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.188-189
    • /
    • 2020
  • In the field of architecture, concrete and steel bars are the most common and popular combinations. The relationship between the two in a structure is a complementary good that increases in utility when consuming both materials at the same time. However, the combination of the two, which has been perceived as semi-permanent, often faces repairs or reconstruction without its lifespan reaching decades. There are a number of deterioration factors at work for the reason for this phenomenon. Among them, the neutralization of concrete in particular refers to the process in which calcium hydroxide inside concrete reacts with carbon dioxide and loses alkalinity, which creates a corrosive environment for rebars inside concrete, causing serious damage to concrete. In this study, we intend to use a multi-physical analysis program using finite element analysis method to analyze the degree of carbonation according to the internal temperature and concentration of carbon dioxide in concrete, thereby contributing to the prediction of long-term neutralization of concrete and the research related to measures for neutralization of concrete.

  • PDF

Contrasting rice sub-populations to tocols ratio associated with seed longevity

  • Lee, Jae-Sung;Kwak, Jieun;Yoon, Mi-Ra;Lee, Jeom-Sig;Hay, Fiona R.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.31-31
    • /
    • 2017
  • Understanding the mechanism(s) to overcome or prevent seed ageing deterioration during storage is of fundamental interest to seed physiologists. Vitamin E (tocols) is known as a key metabolite to efficiently scavenge lipid peroxy radicals which cause membrane breakdown resulting in seed ageing. However, in rice research this hypothesis has been tested for very few lines only without considering intraspecific variation in genomic structure. Here, we present a correlation study between tocols and seed longevity using a diverse rice panel. Seeds of 20 rice accessions held in the International Rice Genebank at the International Rice Research Institute, representing aus, indica, temperate japonica and tropical japonica subpopulations, were used for tocols analysis (quantification of ${\alpha}$-, ${\beta}$-, ${\gamma}$-, ${\delta}$-tocopherol/tocotrienol by ultra performance liquid chromatography) and storage experiments at $45^{\circ}C$ and 10.9% seed moisture content (sample taken for germination testing every 3 days up to 60 days). To examine interactions between DNA sequences and phenotype, the 700k high-density single-nucleotide polymorphism marker data-set was utilized. Both seed longevity (time for viability to fall to 50%; $p_{50}$) and tocols content varied across subpopulations due to heterogeneity in the genetic architecture. Among eight types of tocol homologues, ${\alpha}$-tocopherol and ${\gamma}$-tocotrienol were significantly correlated with $p_{50}$ (negatively and positively, respectively). While temperate japonica varieties were most abundant in ${\alpha}$-tocopherol, indica varieties recorded 1.3 to 1.7-fold higher ${\gamma}$-tocotrienol than those of other subpopulations. It was highlighted that specific ratio of tocol homologues rather than total tocols content plays an important role in the seed longevity mechanism.

  • PDF

Ultra-low cycle fatigue tests of Class 1 H-shaped steel beams under cyclic pure bending

  • Zhao, Xianzhong;Tian, Yafeng;Jia, Liang-Jiu;Zhang, Tao
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.439-452
    • /
    • 2018
  • This paper presents experimental and numerical study on buckling behaviors and hysteretic performance of Class 1 H-shaped steel beam subjected to cyclic pure bending within the scope of ultra-low cycle fatigue (ULCF). A loading device was designed to achieve the pure bending loading condition and 4 H-shaped specimens with a small width-to-thickness ratio were tested under 4 different loading histories. The emphasis of this work is on the impacts induced by local buckling and subsequent ductile fracture. The experimental and numerical results indicate that the specimen failure is mainly induced by elasto-plastic local buckling, and is closely correlated with the plastic straining history. Compared with monotonic loading, the elasto-plastic local buckling can occur at a much smaller displacement amplitude due to a number of preceding plastic reversals with relative small strain amplitudes, which is mainly correlated with decreasing tangent modulus of the material under cyclic straining. Ductile fracture is found to be a secondary factor leading to deterioration of the load-carrying capacity. In addition, a new ULCF life evaluation method is proposed for the specimens using the concept of energy decomposition, where the cumulative plastic energy is classified into two categories as isotropic hardening and kinematic hardening correlated. A linear correlation between the two energies is found and formulated, which compares well with the experimental results.

Elastic Modulus Extraction of Wire Mesh for Vibration Mount Development (방진마운트 개발을 위한 와이어 메쉬 탄성계수 추출)

  • Kim, Tae-Yeon;Shin, Yun-ho;Moon, S.J.;Jung, B.C.;Lee, T.J.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.806-813
    • /
    • 2016
  • To alleviate the vibration problem or to satisfy the required criteria for manifesting the guaranteed performance of precise equipment, various vibration isolation materials or apparatus, such as viscoelastic material, air and coil spring, have been developed and applied. Among them, a wire mesh material is regarded as one of the good candidate for reducing the vibration in terms of moderate material price, easy shape machining and long life cycle without the property deterioration induced by the aging or environmental effects. In this paper, prior to wire mesh isolator design, the static and dynamic elastic modulus of wire mesh materials are extracted from the experiment by the simple shaped cylindrical specimens and their characteristics for applying to vibration isolator design are examined. The simple shaped specimens were made as considering the design parameters of a wire mesh mount; i.e. the density, wire diameter and wire mesh slope, and the sensitivity analysis were also performed from a view point of the extracted elastic modulus.

Reduction of Drying Shrinkage of Mortar and Concrete by Expansion of Rapid Cooling Slag Fine Aggregate (급냉 슬래그 잔골재의 팽창성을 활용한 모르타르 및 콘크리트의 건조수축저감에 관한 연구)

  • Lee, Dong-Gyu;Min, Kyung-Hwan;Jeong, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3511-3517
    • /
    • 2015
  • It is necessary to maximize the durability of Concrete for the underground structure because its maintenance and reinforcement are difficult. For cracks due to drying shrinkage of the concrete on the characteristics of the material, there is a need for an alternative in the deterioration phenomenon that occurs. In this study, fundamental properties including drying shrinkage of mortar and concrete were investigated to replace fine aggregate from cooling slag for reducing drying shrinkage of mortar and concrete. In the case of rapid cooling slag fine aggregate, it was effective to reduce and restrain initial shrinkage of mortar and concrete, and compressive strength was increased through the all specimen in proportion to its replacement ratio.

Effects of Fly Ash on Chloride Binding Capacity in Cement Pastes (시멘트 페이스트 내의 염화물 고정화에 미치는 플라이 애쉬의 영향)

  • 소승영;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.209-215
    • /
    • 1995
  • Corrosion of steel reinforcment is the most significant factor of deterioration in reinforced concrete structures. Chloride ion is considered one of the most common culprits in the corrosion of steel in concrete. It breaks down the passive film and allows the steel to corrode actively at a high rate. The main objective of this study is to determine the critical chloride ion concentrations in the pore solutions and chloride binding effect of cement pastes made with and without fly ash. Cement pastes with water-binder ratio of 0.5, allowed to hydrate in sealed containers for 28 days and to express pore solution. The expressed pore fluids were analyzed for chloride and hydroxyl ion concentrations. Evaporable water on paralled specimens was determined a.s the loss of weight per 100g of unhydreded cement when the specimens were heated to constant weight at 105'C. It was found that the replaced cement with fly ash has negligible influnce on the chloride binding and chloride binding capacity and rises the $Cl^-$ /$OH^-$ ratio in pore solution.