• Title/Summary/Keyword: rating information

Search Result 878, Processing Time 0.026 seconds

Rating and Comments Mining Using TF-IDF and SO-PMI for Improved Priority Ratings

  • Kim, Jinah;Moon, Nammee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5321-5334
    • /
    • 2019
  • Data mining technology is frequently used in identifying the intention of users over a variety of information contexts. Since relevant terms are mainly hidden in text data, it is necessary to extract them. Quantification is required in order to interpret user preference in association with other structured data. This paper proposes rating and comments mining to identify user priority and obtain improved ratings. Structured data (location and rating) and unstructured data (comments) are collected and priority is derived by analyzing statistics and employing TF-IDF. In addition, the improved ratings are generated by applying priority categories based on materialized ratings through Sentiment-Oriented Point-wise Mutual Information (SO-PMI)-based emotion analysis. In this paper, an experiment was carried out by collecting ratings and comments on "place" and by applying them. We confirmed that the proposed mining method is 1.2 times better than the conventional methods that do not reflect priorities and that the performance is improved to almost 2 times when the number to be predicted is small.

The Effect of Financial Ratios on Credit Rating by Adoption of K-IFRS (K-IFRS 도입에 따른 재무비율이 신용평가에 미치는 영향)

  • Wang, Hyun-Sun
    • Management & Information Systems Review
    • /
    • v.35 no.4
    • /
    • pp.37-56
    • /
    • 2016
  • This study investigates how adapting of K-IFRS effects NI and OCI affecting of credit rating on changing of the period and variable by using samples of around adapting of K-IFRS. First of all, after adapting of K-IFRS(2011-2013), it was noticeable that how NI affecting after adapting of K-IFRS(2007-2010) had been increased more than that of before affecting of K-IFRS. However, there was not a single difference in affecting OCI on credit rating comparing to the past of adapting of K-IFRS. Second, it seemed like NI affected more after adapting of K-IFRS(2011-2013). The first year of K-IFRS had bigger incremental effect than after adapting of K-IFRS. However, after adapting of K-IFRS, OCI affecting on credit rating had no ncremental effect. Third, it seemed like NI in the first year affected more than OCI on credit rating. After adapting(2012-2013) of K-IFRS, it seemed like NI and OCI do not affect on credit rating. To interpret this, NI and OCI affected the first year of adapting of K-IFRS; therefore, adapting of K-IFRS affected without affecting financial ratio on adapting credit rating. As the time goes on, it can be expected that adapting K-IFRS became stable; therefore, extra incremental effect will not be seen comparing to the early adaption. The implication of this study is when information users use credit rating, they have to concern of affecting of K-IFRS. This is because NI in financial ratio is affecting on credit rating.

  • PDF

Corporate Bond Rating Using Various Multiclass Support Vector Machines (다양한 다분류 SVM을 적용한 기업채권평가)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

Rating Individual Food Items of Restaurant Menu based on Online Customer Reviews using Text Mining Technique (신뢰성있는 온라인 고객 리뷰 텍스트 마이닝 기반 식당 개별 음식 아이템 평가)

  • Syed, Muzamil Hussain;Chung, Sun-Tae
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.389-392
    • /
    • 2020
  • The growth in social media, blogs and restaurant listing directories have led to increasing customer reviews about restaurants, their quality of food items and services available on the internet. These user reviews offer a massive amount of valuable information that can be used for various decision-making purposes. Currently, most food recommendation sites provide recommendation scores about restaurants rather than food items of the restaurant and the provided recommendation scores may be biased since they are calculated only from user reviews listed only in their sites. Usually, people wants a reliable recommendation about foods, not restaurant. In this paper, we present a reliable Korean food items rating method; we first extract food items by applying NER technique to restaurant reviews collected from many Korean restaurant recommendation web sites, blogs and web data. Then, we apply lexicon-based sentiment analysis on collected user reviews and predict people's opinions as sentiment polarity scores (+1 for positive; -1 for negative; 0 for neutral). Finally, by taking average of all calculated polarity scores about a food item, we obtain a rating to individual menu items of the restaurant. The proposed food item rating is more reliable since it does not depend on reviews of only one site.

Integration rough set theory and case-base reasoning for the corporate credit evaluation (러프집합이론과 사례기반추론을 결합한 기업신용평가 모형)

  • Roh, Tae-Hyup;Yoo Myung-Hwan;Han In-Goo
    • The Journal of Information Systems
    • /
    • v.14 no.1
    • /
    • pp.41-65
    • /
    • 2005
  • The credit ration is a significant area of financial management which is of major interest to practitioners, financial and credit analysts. The components of credit rating are identified decision models are developed to assess credit rating an the corresponding creditworthiness of firms an accurately ad possble. Although many early studies demonstrate a priori which of these techniques will be most effective to solve a specific classification problem. Recently, a number of studies have demonstrate that a hybrid model integration artificial intelligence approaches with other feature selection algorthms can be alternative methodologies for business classification problems. In this article, we propose a hybrid approach using rough set theory as an alternative methodology to select appropriate attributes for case-based reasoning. This model uses rough specific interest lies in lthe stable combining of both rough set theory to extract knowledge that can guide dffective retrevals of useful cases. Our specific interest lies in the stable combining of both rough set theory and case-based reasoning in the problem of corporate credit rating. In addition, we summarize backgrounds of applying integrated model in the field of corporate credit rating with a brief description of various credit rating methodologies.

  • PDF

A Hierarchical Text Rating System for Objectionable Documents

  • Jeong, Chi-Yoon;Han, Seung-Wan;Nam, Taek-Yong
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.22-26
    • /
    • 2005
  • In this paper, we classified the objectionable texts into four rates according to their harmfulness and proposed the hierarchical text rating system for objectionable documents. Since the documents in the same category have similarities in used words, expressions and structure of the document, the text rating system, which uses a single classification model, has low accuracy. To solve this problem, we separate objectionable documents into several subsets by using their properties, and then classify the subsets hierarchically. The proposed system consists of three layers. In each layer, we select features using the chi-square statistics, and then the weight of the features, which is calculated by using the TF-IDF weighting scheme, is used as an input of the non-linear SVM classifier. By means of a hierarchical scheme using the different features and the different number of features in each layer, we can characterize the objectionability of documents more effectively and expect to improve the performance of the rating system. We compared the performance of the proposed system and performance of several text rating systems and experimental results show that the proposed system can archive an excellent classification performance.

Influence of Global versus Local Rating Agencies to Japanese Financial Firms

  • Han, Seung Hun;Reinhart, Walter J.;Shin, Yoon S.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.5 no.4
    • /
    • pp.9-20
    • /
    • 2018
  • Global rating agencies, such as Moody's and S&P, have assigned credit ratings to corporate bonds issued by Japanese firms since 1980s. Local Japanese rating agencies, such as R&I and JCR, have more market share than the global raters. We examine the yield spreads of 1,050 yen-denominated corporate bonds issued by financial firms in Japan from 1998 to 2014 and find no evidence that bonds rated by at least one global agency are associated with a significant reduction in the cost of debt as compared to those rated by only local rating agencies. Unlike non-financial firms, the reputation effect of global rating agencies does not exist for Japanese financial firms. We also observe that firms with less information asymmetry are more likely to acquire ratings from Moody's or S&P. Additionally, the firm's financial profile does not affect its choice to seek out ratings from global raters. Our findings are contradictory to those by Han, Pagano, and Shin (2012), who employ bonds issued by non-financial firms in Japan. Our conjecture is that the asymmetric nature of financial firms makes investors less likely to depend on a credit risk assessment by rating agencies in determining the yields of new bonds.

A Study on Responsible Investment Strategies with ESG Rating Change (ESG 등급 변화를 이용한 책임투자전략 연구)

  • Young-Joon Lee;Yun-Sik Kang;Bohyun Yoon
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.4
    • /
    • pp.79-89
    • /
    • 2022
  • Purpose - The purpose of this study was to examine the impact of ESG rating changes of companies listed in Korean Stock Exchange on stock returns. Design/methodology/approach - This study collected prices and ESG ratings of all the companies listed on the Korea Composite Stock Price Index. Based on yearly change of ESG ratings we grouped companies as 2 portfolios(upgrade and downgrade) and calculated portfolios' return. Findings - First, the difference in returns between upgraded and downgraded portfolios is small and statistically insignificant. Second, however, in the COVID-19 period (2020 ~ 2021), the upgraded portfolio outperforms the downgraded portfolio by 0.7 percentage points per month. The difference in returns between upgraded and downgraded portfolios is statistically significant after controlling for the Carhart four factors. Lastly, there are much higher volatility when the ESG rating changes are made of companies with low levels of ESG ratings. Research implications or Originality - This study is the first to examine the impact of ESG rating changes on stock returns in Korea. Furthermore, the findings can serve as a reference for managers who want to control a firm's risk by ESG rating changes. Practically, asset managers can use the findings to construct portfolios that are less risky or more profitable than the market portfolio.

Recommendations Based on Listwise Learning-to-Rank by Incorporating Social Information

  • Fang, Chen;Zhang, Hengwei;Zhang, Ming;Wang, Jindong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.109-134
    • /
    • 2018
  • Collaborative Filtering (CF) is widely used in recommendation field, which can be divided into rating-based CF and learning-to-rank based CF. Although many methods have been proposed based on these two kinds of CF, there still be room for improvement. Firstly, the data sparsity problem still remains a big challenge for CF algorithms. Secondly, the malicious rating given by some illegal users may affect the recommendation accuracy. Existing CF algorithms seldom took both of the two observations into consideration. In this paper, we propose a recommendation method based on listwise learning-to-rank by incorporating users' social information. By taking both ratings and order of items into consideration, the Plackett-Luce model is presented to find more accurate similar users. In order to alleviate the data sparsity problem, the improved matrix factorization model by integrating the influence of similar users is proposed to predict the rating. On the basis of exploring the trust relationship between users according to their social information, a listwise learning-to-rank algorithm is proposed to learn an optimal ranking model, which can output the recommendation list more consistent with the user preference. Comprehensive experiments conducted on two public real-world datasets show that our approach not only achieves high recommendation accuracy in relatively short runtime, but also is able to reduce the impact of malicious ratings.

Consideration on Role and Functions of Game Rating Board (게임물등급위원회의 발전방향 모색)

  • Kim, Chan-Soo;Park, Tae-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.4
    • /
    • pp.114-122
    • /
    • 2007
  • Recently, Game Rating Board has been established. It is to follow worldwide trend in building up publicity, autonomy and professionalism under the framework to assure freedom of expression. This article analyzed major nation's game rating system, and showed some points to need improvement which are to have more detailed classification in game rating, to modify contents descriptor, to appoint committee members with expertise on game, to revise articles to be capable of misuse, and to become a nongovernmental organization.