• Title/Summary/Keyword: rates

Search Result 27,687, Processing Time 0.059 seconds

Energy Requirements of Growing Hanwoo Bulls for Maintenance by Fasting Metabolism (절식대사 시험에 의한 한우 수소의 유지에너지 요구량 결정에 관한 연구)

  • Lee, S. C.;Thak, T. Y.;Kim, K. H.;Yoon, S. G.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.113-122
    • /
    • 2003
  • Net and metabolizable energy requirements for maintenance of Hanwoo (Korean native cattle) bulls were estimated in twenty-eight fasting metabolism trials using seven different feeds at four stages of body weight(100, 200, 300 and 400kg). Three cattle for each of twenty-eight trials fed at a level of maintenance energy requirement were housed in metabolic stalls during the 5 days of collection period. Thereafter, during the 2 days of respiration period the heat production was measured by indirect calorimetry using respiratory chamber. After finishing the respiratory metabolism trials under the maintenance level, experimental animals were fasted for 5 days and were measured heat production by indirect calorimetry using respiratory chamber. Seven different feeds were: 1) mixed ration of concentrate and rice straw, 2) mixed ration of concentrate and mixed grass hay, 3) mixed ration of concentrate and corn silage, 4) rice straw alone, 5) mixed grass hay alone, 6) corn silage alone, 7) concentrate alone. Fasting heat production were 66.05/$W^{0.75}$ at 100kg of body weight and 60~63kcal/$W^{0.75}$ at 200~400kg of body weight. When subtracting heat loss by muscular work from the fasting heat production, basal metabolic rate was 55.92kcal/$W^{0.75}$. The average values of NEm requirements were obtained by adding urinary energy excretion to the basal metabolic rates were 69.1, 62.1, 65.8 and 64.4kcal/$W^{0.75}$ for the four stages of body weight, respectively. The ME requirement for maintenance could be calculated using retained energy and the efficiency of utilization of ME for net energy. The ME requirement for maintenance thus obtained was 102.69kcal/$W^{0.75}$.

Agricultural Geography of Rice Culture in California (미국 캘리포니아주(州)의 벼농사에 관한 농업지리학적 연구)

  • Lee, Jeon;Huh, Moo-Yul
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.1
    • /
    • pp.51-67
    • /
    • 1996
  • There are three main rice-growing regions in the United States: the prairie region along the Mississippi River Valley in eastern Arkansas; the Gulf Coast prairie region in southwestern Louisiana and southeastern Texas; and the Central Valley of California. The Central Valley of California is producing about 23% of the US rice(Fig. 1). In California. most of the crop has been produced in the Colusa, Sutter, Butte, Glenn Counties of the Sacramento Valley since 1912, when rice was commercially grown for the first time in the state(Fig. 2). Roughly speaking, the average annual area sown to rice in California is about 300,000 acres to 400,000 acres during the last forty years(Fig. 3). California rice is grown under a Mediterranean climate characterized by warm, dry, clear days, and a long growing season favorable to high photosynthetic rates and high rice yields. The average rice yield per acre is probably higher in California than in any other rice-growing regions of the world(Fig. 4). A dependable supply of irrigation water must be available for a successful rice culture. Most of the irrigation water for California rice comes from the winter rain and snow-fed reservoir of the Sierra Nevada mountain ranges. Less than 10 percent of rice irrigation water is pumped from wells in areas where surface water is not sufficient. It is also essential to have good surface drainage if maximum yields are to be produced. Rice production in California is highly mechanized, requiring only about four hours of labor per acre. Mechanization of rice culture in California includes laser-leveler technology, large tractors, self-propelled combines for harvesting, and aircraft for seeding, pest control, and some fertilization. The principal varieties grown in California are medium-grain japonica types with origins from the cooler rice climates of the northern latitudes (Table 1). Long-grain varieties grown in the American South are not well adapted to California's cooler environment. Nearly all the rice grown recently in California are improved into semidwarf varieties. Choice of variety depends on environment, planting date, quality desired, marketing, and harvesting scheduling. The Rice Experiment Station at Biggs is owned, financed, and administered by the rice industry. The station was established in 1912, as a direct result of the foresight and effort of Charles Edward Chambliss of the United States Department of Agriculture. Now, The station's major effort is the development of improved rice varieties for California.

  • PDF

Survival Rate of Lactic Acid Bacteria and the Change of ${\beta}-Galactosidase$ Activity in Commercial Yogurts Under the Acidic Conditions (산성조건하에서 시판요구르트의 유산균 생존률과 ${\beta}-galactosidase$의 활성도)

  • Shin, Yong-Seo;Sung, Hyun-Ju;Kim, Dong-Han;Lee, Kap-Sang
    • Applied Biological Chemistry
    • /
    • v.37 no.3
    • /
    • pp.143-147
    • /
    • 1994
  • Four samples of commercially manufactured yogurts (plain, drinking type) were purchased and evaluated their physico-chemical properties, buffering capacity. And the survival rate of lactic acid bacteria and their ${\beta}-galactosidase$ activity under the acidic conditions (in vitro) were investigated. The values of pH, titratable acidity, viscosity and viable cell counts of yogurts were $3.71{\sim}4.08$, $0.990{\sim}1.045%$, $256{\sim}3164\;cps.$ and $10^8{\sim}10^9\;cfu/ml$, respectively. The volume of 1.0 M-HCl required to reduce the pH of yogurt (50 ml) to minus 2 value was $3.58{\sim}4.33\;ml$. When commercial yogurts were incubated at $37^{\circ}C$ for 120 minutes under the acidic conditions (pH 3.5, 2.5, 1.5), the survival rates of lactic acid bacteria in yogurt were $3.5{\times}10^{-2}{\sim}3.6{\times}10^{-1}%$ at pH 2.5, $8.3{\times}10^{-5}{\sim}4.2{\times}10^{-3}%$ at pH 1.5, respectively, but there was no significant difference at pH 3.5. The remaining activities of ${\beta}-galactosidase$ were $9.4{\sim}36.2%$ at pH 2.5, $4.2{\sim}19.0%$ at pH 1.5, respectively. These results suggested that a significant number of lactic acid bacteria in yogurt might be destroyed in the hostile environment of the stomach, but ${\beta}-galactosidase$ activity from yogurt might be somewhat maintained probably due to the protecting effect by its cell wall and membrane.

  • PDF

Varietal Response to Grain Quality and Palatability of Cooked Rice Influenced by Different Nitrogen Applications (질소 시비조건에 따른 벼 품종의 미질과 식미특성 반응)

  • Kim, Jeong-Il;Choi, Hae-Chun;Kim, Kwang-Ho;Ahn, Jong-Kuk;Park, No-Bong;Park, Dong-Soo;Kim, Chun-Song;Lee, Ji-Yoon;Kim, Jae-Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.13-23
    • /
    • 2009
  • To intensively analyze and examine the changes in palatability of cooked rice and structural properties of rice grains influenced by increased nitrogen topdressing during the panicle formation and ripening stage, a series of experiments were carried out using three japonica rice cultivars with contrasting rice quality characteristics. The protein content of brown rice increased maximally up to $35{\sim}47%$ of that in standard N6 plot with the increase in nitrogen topdressing fertilizer during 20 days before heading to 10 days after flowering. The high-yielding rice cultivars showing poor palatability of cooked rice revealed larger increase in protein content of rice grains by increased nitrogen topdressing. Under the same nitrogen level of 15 kg per 10a with nitrogen topdressing at 3 kg/10a, high-yielding rice cultivars, Yumehikari and Reihou showed the significant increase in protein content of brown rice when topdressing was applied at 10 days after flowering as compared with when it was applied at 30 days after transplanting. Although the variation in amylose content of milled rice as affected by nitrogen topdressing level was relatively small, it decreased within 1% with the opposite tendency against increased protein content of brown rice by increased nitrogen topdressing. The total score of sensory evaluation was higher in the order of Hinohikari < Yumehikari < Reihou in panel test. It decreased significantly by increased amounts of nitrogen topdressing during 20 days before heading to 10 days after flowering when nitrogen level was higher than 12 kg/10a. The more poor palatable rice cultivar in panel test revealed the larger decreasing in total score of sensory evaluation by higher nitrogen topdressing rates. All sensory evaluation components were largely affected by the change in protein content of brown rice rather than amylose content of milled rice. The influence of protein content to palatability of cooked rice was larger in poor-palatable rice than in high-palatable rice. The protein content decreased drastically from outer layer to inner layer of rice grains, while the amylose content increased on the contrary. The high-palatable rice exhibited higher distribution of protein content on bran layer but lower distribution of protein content on the layer of polished rice as compared with the poor-palatable rice. Especially, the high-palatable rice showed also significantly lower distribution of amylose content on the outer layer of polished rice as compared with the poor-palatable rice.

Effect of Sink and Source Related Characteristics on Grain Weight and Grain Nitrogen Content in Rice (Sink와 Source 관련형질 변이가 벼 종실중 및 종실질소함량 변이에 미치는 영향)

  • Lee, Chung-Kuen;Kwon, Young-Up;Lee, Jae-Eun;Seo, Jong-Ho;Shin, Jin-Chul;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.45-54
    • /
    • 2009
  • This experiment was conducted to clarify the effects of source and sink related characteristics on grain weight increase and grain nitrogen accumulation in rice. Source was modified by leaf removing treatment with no sink modification in 2002 and sink and source were modified at the same time by different sowing dates, N fertilization rates, row spacings, and thinning treatments at heading in 2007. Grain weight (GW) and grain assimilates produced by photosynthesis during grain-filling ($GW_P$) increased with the increase of source, while the grain assimilates retranslocated from leaf and stem ($GW_T$) decreased. Among the source-related characters, shoot dry weight were most closely related with GW. GW was dependant on $GW_P$ rather than on $GW_T$. Grain nitrogen content (GN) and grain nitrogen absorbed from soil during grain-filling ($GN_S$) increased with the increase of source, while the grain nitrogen retranslocated from leaf and stem ($GN_T$) decreased. Shoot nitrogen content among the source-related characters was related most closely with GN. The contribution of $GN_T$ to GN was relatively large although GN depended more largely on $GN_S$ than $GN_T$. In addition, GN was supplied firstly from $GN_S$ or from $GN_S$ and $GN_T$ at the same time.

Origin, Age and Sedimentation Rate of Mid-Geum River Sediments (금강 중류 하상 퇴적층의 기원과 형성시기 및 퇴적율)

  • Oh, Keun-Chang;Kim, Ju-Yong;Yang, Dong-Yoon;Hong, Sei-Sun;Lee, Jin-Young;Lim, Jae-Soo
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.333-341
    • /
    • 2010
  • Fluvial sediments are widely distributed in present and old river-beds of the mid-Keum River, the tributaries of which are the Yugu and Jeongan Rivers. The basement of the mid-Keum River area consists of Mesozoic granites which are easily eroded compared to Precambrian gneisses, which are exposed in the upper-Keum River area. The provenance of the fluvial sediments includes both the Precambrian gneisses and Mesozoic granites, which occur in the catchment of the mid-Keum River. The coarse-grained sediments were probably transported from the river-beds and the overbank floodings of the main Keum River and its tributaries when the climate was warm and wet. The oldest mud deposits were dated at ca. 9,400 yr BP by the radiocarbon method. It has been estimated that the sand deposits below the dated muds were formed in a period from the Late Pleistocene to the Early Holocene. However we have revealed that the major part of the present river-bed sediments was formed at ca. 3,000-6,000 yr BP, i.e., in the mid- to late Holocene, when summer monsoon was very strong due to climatic changes. We have calculated fluvial sedimentation rates of 0.12-0.16 cm/yr and 0.02-0.09 cm/yr for borehole KJ-29 river-bed sediments and borehole KJ-28 floodplain deposits, respectively. We conclude that the sedimentation rate is higher near the present stream channel than near the floodplain.

The Effect of Algae on Coagulation and Filteration of Water Treatment Process (정수처리과정중 응집및 여과에 미치는 조류의 영향)

  • Lim, Young-Sung;Song, Won-Seb;Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.1
    • /
    • pp.13-19
    • /
    • 2000
  • Seasonal variations of dominant algae species and the effects of these algae on coagulation and filteration of water treatment were investigated at Chilseo water treatment plant in downstream of Nakdong river from January in 1995 to Desember of 1998. The water quality of Nakdong river was found to be a hyper eutrophic state during the investigation periods. In the measurement, Chlorophyll-a contents ranged $20.7{\sim}180.9{\mu}g/l$ and total nitrogen contents(T-N) and total phosphorus contents(T-P) exceeded more than 3.4mg/l and 0.1mg/l, respectively. The changes in dominant algae species was in the order of Stepanodiscus sp., Asterionella sp., Melosira sp., Microcystis sp. and Synedra sp. from spring to winter. Microcystis sp. especially, was blooming during summer and Synedra sp. and Stepanodiscus sp. during winter. Although most diatomous algae appeared in the water treatment process caused filter clogging and reduced efficiency of coagulation and sedimentation, Synedra sp. and Stepanodiscus sp were revealed as the main trouble algae. Malfunction of water treatment process caused by Synedra sp. and Stepanodiscus sp. started at the algae concentrations of 800cells/ml and 1,820cells/ml, respectively. When chlorophyll-a content was $18.9{\mu}g/l$, the optimum amounts of coagulant were found to be 40mg/l of Alum and 16mg/l of PACS. Under condition of chlorophyll-a content of $154.1{\mu}g/l$, addition of Alum at the level of 75mg/l and PACS at the level of 35mg/l showed the lowest turibidity. The result indicates that increased amounts of the coagulants should be added for a better water treatment as chlorophyll-a contents increased. Addition of Alum at the amount of 60mg/l and 30mg/l of PACS removed Stepanodiscus sp. algae at the rate of 85% and 83%, respectively. In case of Synedra sp., 50mg/l of Alum and 25mg/l of PACS showed removal rates of 79% and 81%, respectively. Synedra sp. algae at the standing crops of 1,500cells/ml started filter clogging and a filtering process was completely inhibited after 8 hours. At this situation the filter clogging by Synedra sp. algae occurred at the depth of 5cm from the top anthracite layer. On the other, other algae did filter clogging at the depth of 10cm.

  • PDF

Effects of Paper Sludge Application on the Chemical Properties of Paddy Soil and Growth of Paddy Rice II. Effects of Paper Sludge Application on the Seasonal Variations of Humus in Paddy Soil (제지(製紙)슬러지의 시용(施用)이 논 토양(土壤)의 화학성(化學性)과 수도생육(水稻生育)에 미치는 영향(影響) II. 토양중(土壤中) 부식형태(腐植形態)에 미치는 슬러지의 영향(影響))

  • Heo, Jong-Soo;Kim, Kwang-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1986
  • To investigate the effects of paper sludge on the seasonal variations of soil humus, paper sludges were applied to the pots at the rates of 600㎏/10a which was either preadjusted C/N ratio to 30 : 1 or not adjusted. The effects were compared with those of control. 1) The contents of ether soluble materials, resins, water soluble polysaccharides, hemicellulose, cellulose, ligno-protein, humic acid and fulvic acid were higher in the sludge treated soil than in the control, furthermore, the content of ligno-protein had positive correlation with that of organic nitrogen in soil. 2) Optical density of UV and visible spectra of humic acid obtained from all the treated soil was decreased with increasing wavelength. In functional groups of humic acid, phenolic-OH/alcoholic-OH ratio was slightly higher in the sludge treated soil than in the control. The types of humic acid in all treated soil were P and Rp types. 3) The infrared spectra of humic acid extracted from the soil were characterized by main absorption bands in the regions of $3, 400cm^{-1}$(H-bonded OH), $2,900cm^{-1}$ (aliphatic C-H stretching), $1,630cm^{-1}$ (aromatic C=C and/or H-bonded C=O) and $1,050cm^{-1}$ (Si-O of silicate impurity).

  • PDF

Microbial degradation and other methods for accelerated degradation the Herbicide Imazapyr (제초제 Imazapyr 의 미생물에 의한 분해 및 기타 방법에 의한 분해 촉진)

  • Lee, Jae-Koo;Kwon, Jeong-Wook
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.5-10
    • /
    • 1998
  • The microbial degradation, photosensitizer-mediated photolysis, and bioceramic- accelerated degradation of the herbicide imazapyr were investigated using four types of soil. 1. Seven strains of microorganisms isolated from the soil A and the active sludge collected from the waste water disposal plant in CheongJu did not give any distinct degradation products in pure culture. When imazapyr (10ppm) was incubated for 14days with each of the 6strains of the known bacteria, they did not produce any noticeable products, either, suggesting that imazapyr was degraded very little by microorganisms in aqueous media. Meanwhile, when 50ppm of imazapyr was incubated in soil A and B for 6months, a degradation product of m/z 279 was detected. It turned out to be 2-[(1-carbamoyl-1,2-dimethylpropyl)carbamoyl]nicotinic acid, which was formed by the hydrolytic cleavage of the imidazolinone ring and by tautomerism. When imazapyr was exposed to sunlight, degradation rates were 14.6% under the control and 66.0, 76.5, 26.7, and 90.0% in the presence of PS-1 (100ppm), PS-1 (200ppm), PS-2(100ppm), and PS-3(100ppm), respectively, and a degradation product of m/z 149 was tentatively identified in the treatment of PS-1. 2. When soil C and D treated with bioceramic were incubated for 7weeks, the $^{14}C$-activities of $^{14}CO_2$ evolved were 2.03 and 1.12% of the originally applied ones, respectively, whereas those in control soils without bioceramic were 1.88 and 0.82% showing no significant defferences.After 5 weeks, however,the differences in the amounts of $^{14}CO_2$ between the two treatments increased gradually, suggesting the bioceramic effect.

  • PDF

Urban aquaculture of catfish, Silurus asotus, using biofloc and aquaponics systems (바이오플락과 아쿠아포닉스를 이용한 도심형 양식시스템에서의 메기양식)

  • Kim, Seok Ryel;Jang, Jin Woo;Kim, Bum Ju;Jang, In Kwon;Lim, Hyun Jeong;Kim, Su Kyoung
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.545-553
    • /
    • 2019
  • This study was conducted to determine whether the water in which nitrate accumulated during long-term fish culture in an aquaponics system without water exchange could be removed and reused as catfish-culturing water. The catfish (Silurus asotus) were cultured in the urban aquaculture system using BFT (Biofloc Technology) aquaculture and an aquaponics system (two rearing tanks, 3 tons each) without exchanging the rearing water. After 151 days (from March to August) of rearing, 2.8 g of fry had grown to an average weight of 171.3 g (total weight, 56.53 kg) and 235.5 g (total weight 71.1 kg), respectively. The overall survival rate was 65% in the urban aquaculture system. However, the survival rate was 77.7% before separation into the two tanks. The survival rates after the separation were 92.9% and 78.0%. In the early biofloc watermaking process, there was a high mortality rate. After water stabilization, the mortality rate decreased and some mortality occurred during the period when the total amount of suspended solids (TSS) increased. The results of monthly blood analysis of the catfish showed that the AST concentration was significantly higher in April. Blood ALT levels and triglycerides showed no difference in the rearing period and the glucose, cholesterol, and total protein levels were significantly higher in July. There was no difference in the other periods. The plants produced by the aquaponics system using catfish-rearing water were lettuce, basil, chard, and red chicory. These showed smooth growth and a total of 148.85 kg of plants were harvested in five months. It was possible to remove nitric acid from the aquaponics system and reuse it as catfish-rearing water. Maintaining proper plant quantity according to the capacity of the catfish showed that the combination of agricultural and aquatic products was possible.