DOI QR코드

DOI QR Code

Urban aquaculture of catfish, Silurus asotus, using biofloc and aquaponics systems

바이오플락과 아쿠아포닉스를 이용한 도심형 양식시스템에서의 메기양식

  • Kim, Seok Ryel (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Jang, Jin Woo (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Bum Ju (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Jang, In Kwon (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Lim, Hyun Jeong (East Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Su Kyoung (West Sea Fisheries Research Institute, National Institute of Fisheries Science)
  • 김석렬 (국립수산과학원 서해수산연구소) ;
  • 장진우 (국립수산과학원 서해수산연구소) ;
  • 김범주 (국립수산과학원 서해수산연구소) ;
  • 장인권 (국립수산과학원 서해수산연구소) ;
  • 임현정 (국립수산과학원 동해수산연구소) ;
  • 김수경 (국립수산과학원 서해수산연구소)
  • Received : 2019.07.22
  • Accepted : 2019.11.14
  • Published : 2019.12.31

Abstract

This study was conducted to determine whether the water in which nitrate accumulated during long-term fish culture in an aquaponics system without water exchange could be removed and reused as catfish-culturing water. The catfish (Silurus asotus) were cultured in the urban aquaculture system using BFT (Biofloc Technology) aquaculture and an aquaponics system (two rearing tanks, 3 tons each) without exchanging the rearing water. After 151 days (from March to August) of rearing, 2.8 g of fry had grown to an average weight of 171.3 g (total weight, 56.53 kg) and 235.5 g (total weight 71.1 kg), respectively. The overall survival rate was 65% in the urban aquaculture system. However, the survival rate was 77.7% before separation into the two tanks. The survival rates after the separation were 92.9% and 78.0%. In the early biofloc watermaking process, there was a high mortality rate. After water stabilization, the mortality rate decreased and some mortality occurred during the period when the total amount of suspended solids (TSS) increased. The results of monthly blood analysis of the catfish showed that the AST concentration was significantly higher in April. Blood ALT levels and triglycerides showed no difference in the rearing period and the glucose, cholesterol, and total protein levels were significantly higher in July. There was no difference in the other periods. The plants produced by the aquaponics system using catfish-rearing water were lettuce, basil, chard, and red chicory. These showed smooth growth and a total of 148.85 kg of plants were harvested in five months. It was possible to remove nitric acid from the aquaponics system and reuse it as catfish-rearing water. Maintaining proper plant quantity according to the capacity of the catfish showed that the combination of agricultural and aquatic products was possible.

도심형 양식시스템을 바이오플락 양식기술과 아쿠아포닉스 배양대로 구성하여 사육수를 교체하지 않고 메기를(사육조 3.3톤 2개) 양성한 결과 151일의 사육 후 2.8 g의 종묘가 평균 무게 171.3 g (총중량 56.53 kg)과 235.5 g (총중량 71.1 kg)로 성장하였다. 입식에서 수확까지의 누적 생존율은 65% 보였고, 성장 구간별로 입식에서 1차 성장 후 분조 이전까지 77.7%, 분조 이후 생존율은 수조에 따라 차이를 보여 각각 92.9%와 78.0%로 나타났다. 초기 바이오플락 사육수가 만들어지는 과정에서 일부 폐사가 발생하였고, 수질이 안정된 이후에는 폐사가 감소하였다. 메기의 혈액분석결과 사육초기 BFT 사육수가 안정화 이전인 4월에 간 손상 지표인 AST의 농도가 유의적으로 높은 값을 보였으며 ALT, triglyceride는 전 사육기간 내에 차이가 없었다. Glucose, cholesterol, total protein은 7월에 유의적으로 높은 값을 보이고 다른 기간에는 차이가 없었다. 메기 사육수를 이용한 아쿠아포닉스 가동 시 생산된 식물은 상추, 바질, 적근대, 적치커리 등이 원활한 성장을 보여 5개월간 총 148.85 kg의 식물을 수확하였다. 또한 아쿠아포닉스 시스템에서 식물재배에 따른 사육수 내의 질산 제거능력과, 질산이 제거된 사육수는 메기 사육수로 재사용이 가능한 것으로 확인되었다. 결론적으로, 본 연구에서는 도심형 양식시스템으로 물을 교환하지 않고 어류를 양식할 때 사육수에 축적된 질산을 제거하고 재사용이 가능한가를 아쿠아포닉스 기술을 결합하여 연구하였으며, 양식생물(메기) 수용량에 따른 적정 식물량을 유지하면 농수산 복합양식이 가능하다는 것을 보여주었다.

Keywords

References

  1. Almendras JME. 1987. Acute toxicity and methemoglobinemia in juvenile milkfish (Chanos chanos Forsskae). Aquaculture 61:33-40. https://doi.org/10.1016/0044-8486(87)90335-8
  2. Buhmann AK, U Waller, B Wecker and J Papenbrock. 2015. Optimization of culturing conditions and selection of species for the use of halophytes as biofilter for nutrient-rich saline water. Agric. Water Manage. 149:102-114. https://doi.org/10.1016/j.agwat.2014.11.001
  3. Bossier P and J Ekasari. 2017. Biofloc technology application in aquaculture to support sustainable development goals. Microb. Biotechnol. 10:1012-1016. https://doi.org/10.1111/1751-7915.12836
  4. Crab R, T Defoirdt, P Bossier and W Verstraete. 2012. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture 356:351-356. https://doi.org/10.1016/j.aquaculture.2012.04.046
  5. Despommier D. 2013. Farming up the city: The rise of urban vertical farms. Trends Biotechnol. 31:388-389. https://doi.org/10.1016/j.tibtech.2013.03.008
  6. Edwards P. 2003. Peri-urban aquaculture in Kolkata. Aquac. Asia 8:4-6.
  7. Hargreaves JA. 2006. Photosynthetic suspended-growth systems in aquaculture. Aquac. Engineer. 34:344-363. https://doi.org/10.1016/j.aquaeng.2005.08.009
  8. Hilmy AM, NA El -Domiaty and K Wershana. 1987. Acute and chronic toxicity of nitrite to Clarias lazera, Comp. Biochem. Physiol. C 86:247-253. https://doi.org/10.1016/0742-8413(87)90075-2
  9. Huang CY and JC Chen. 2002. Effects on acid-base balance, methemoglobinemia and nitrogen excretion of European eel after exposure to elevated ambient nitrite. J. Fish. Biol. 61:712-725. https://doi.org/10.1006/jfbi.2002.2094
  10. Jensen FB. 2003. Nitrite disrupts multiple physiological functions in aquatic animals. Comp. Biochem. Physiol. A 135:9-24. https://doi.org/10.1016/S1095-6433(02)00323-9
  11. Kim SK, Z Pang, HC Seo, YR Cho, T Samocha and IK Jang. 2014. Effect of bioflocs on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei Postlarvae. Aquac. Res. 45:362-371. https://doi.org/10.1111/are.12319
  12. Lewis WM and DP Morris. 1986. Toxicity of nitrite to fish: a review. Trans. Am. Fish. Soc. 115:183-195. https://doi.org/10.1577/1548-8659(1986)115@@<@@183:tontf@@>@@2.0.co;2
  13. Mamat NZ, MI Shaari and NAAA Wahab. 2016. The production of catfish and vegetables in an aquaponic system. Fish. Aquac. J. 7:181.
  14. Michael CS and RP Morgan. 1983. Acute toxicity of nitric acid to fingerling rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. 76:227-229.
  15. Michael MI, AM Hilmy, NA El-Domiaty and K Wershana. 1987. Serum transaminase activity and histopathological changes in Clarius lazera chronically exposed to nitrite. Comp. Biochem. Physiol. C 86:255-262.
  16. Rijn J. 2013. Waste treatment in recirculation aquaculture systems. Aquac. Eng. 53:49-56. https://doi.org/10.1016/j.aquaeng.2012.11.010
  17. Ryu JG, DY Kim, KH Lim and MH Jeong. 2011. A concept study on introduction of vertical aquaculture for green growth. Korea Maritime Institute. pp. 15-18.
  18. Pinho SM, D Molinari, GL Mello, KM Fitzsimmons and MGC Emerenciano. 2017. Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecol. Eng. 103:146-153. https://doi.org/10.1016/j.ecoleng.2017.03.009
  19. Tomasso JR and GJ Carmichael. 1986. Acute toxicity of ammonia, nitrite, and nitrate to the guadalupe bass, Micropterus treculi. Bull. Environ. Contam. Toxicol. 36:866-870. https://doi.org/10.1007/BF01623596
  20. Wise DJ, JR Tomasso and TM Brandt. 1988. Ascorbic acid inhibition of nitrite -induced methemoglobinemia in channel catfish. Prog. Fish-Cult. 50:77-80. https://doi.org/10.1577/1548-8640(1988)050<0077:AAIONI>2.3.CO;2