• Title/Summary/Keyword: rate of strain

Search Result 3,162, Processing Time 0.029 seconds

Evaluaton of Fatigue Crack Propagation Rate Using Parameter of Fatigue Strain Intensity Factor (피로변형확대계수 $\Delta$A를 이용한 피로크랙 전파속도 평가)

  • 박영철;오세욱;허정원;권혁동;김영광
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.76-84
    • /
    • 1991
  • 본 연구는 피로수명 평가를 위한 새로운 파괴역학적 parameter의 확립에 관한 연구이다. 실질적으로 피로파괴가 일어나는 피로 균열선단의 국소영역에서 변형분포를 미소원형격자측정법을 이용하여 실험적으로 명확히 밝혀내었다. 그리고 이 결과를 기초로 하여 국소피로 변형율장을 대표할 수 있는 피로변형율 확대계수 $\Delta$A를 제안하였다. 또한 새로운 parameter $\Delta$A의 유효성을 여러 피로조건에서 검토한 결과, 균열선단 국소 영역에서 피로 변형율 확대계수 $\Delta$A에 의하여 피로 균열전파 속도평가를 일의적으로 나타낼 수 있음을 확인하였다.

  • PDF

The Behaviors of the Material Parameters Affecting PCI Induced-Fuel Failure (핵연료봉의 PCI파손에 영향을 미치는 인자들의 거동분석)

  • Sim, Ki-Seob;Woan Hwang;Sohn, Dong-Seong;Suk, Ho-Chun
    • Nuclear Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.241-245
    • /
    • 1988
  • It is very important to investigate the behaviors of the material parameters governing PCI fuel failure during power ramp because PCI fuel failure is considered to be related to the operations limits of power reactors. In this study, the behavior characteristics of the material parameters such as hoop stress, hoop strain, ridge height, creep strain rate and strain energy in cladding were studied as a function of the operating parameters such as power shock and ramp rate. The FEMAXI-IV fuel rod performance analysis code was used for this study.

  • PDF

Rate of softening and sensitivity for weakly cemented sensitive clays

  • Park, DongSoon
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.827-836
    • /
    • 2016
  • The rate of softening is an important factor to determine whether the failure occurs along localized shear band or in a more diffused manner. In this paper, strength loss and softening rate effect depending on sensitivity are investigated for weakly cemented clays, for both artificially cemented high plasticity San Francisco Bay Mud and low plasticity Yolo Loam. Destructuration and softening behavior for weakly cemented sensitive clays are demonstrated and discussed through multiple vane shear tests. Artificial sensitive clays are prepared in the laboratory for physical modeling or constitutive modeling using a small amount of cement (2 to 5%) with controlled initial water content and curing period. Through test results, shear band thickness is theoretically computed and the rate of softening is represented as a newly introduced parameter, ${\omega}_{80%}$. Consequently, it is found that the softening rate increases with sensitivity for weakly cemented sensitive clays. Increased softening rate represents faster strength loss to residual state and faster minimizing of shear band thickness. Uncemented clay has very low softening rate to 80% strength drop. Also, it is found that higher brittleness index ($I_b$) relatively shows faster softening rate. The result would be beneficial to study of physical modeling for sensitive clays in that artificially constructed high sensitivity (up to $S_t=23$) clay exhibits faster strain softening, which results in localized shear band failure once it is remolded.

The Effects of Stress History on the Behaviour of Overconsolidated Clay (과압밀점토의 응력이력 의존성에 관한 연구)

  • 김병일;신현영;김용수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.161-166
    • /
    • 2001
  • Overconsolidated clays have a different stress history according to the deposit environment. The stress history is classified into (i) rotation angle of stress path, (ii) overconsolidation ratio, and (iii) magnitude of length of recent stress path. Stress-strain behaviour of overconsolidated clays strongly depends on these stress history. In this study a series of drained stress path tests were carried out. Test results indicated that stress-strain behaviour of overconsolidated clay(focused on strain rate) depends on OCR and length of recent stress path, especially rotation angle.

  • PDF

Prediction of Recrystallization Behavior during Thick-Plate Rolling (후판압연에서의 재결정거동 예측)

  • 이동근;박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.320-326
    • /
    • 1999
  • In the present investigation, recrystallization occurring during hot rolling of thick steel plate was predicted. The thermo-mechanical history of a material point was traced by the finite element method and the recrystallization was predicted by the Sellars equations. The investigation was performed for 4 different cases; two different pass schedules in conventional rolling and two different pass schedules in controller rolling. Variations of temperature, strain, strain rate and grain size were compared with each other. It was found out that the difference of grain size through thickness was more distinctive in the cases of controller rolling.

  • PDF

Prediction of the dynamic flow stress

  • Alves, Marcilio
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.495-504
    • /
    • 2005
  • This article explores a constitutive equation that is able to correlate stress, strain and strain rate. In order to show the advantages of the constitutive equation here proposed and how its material parameters are obtained, data extracted from the literature, for materials as different as polymers and metallic alloys, are used. Finite element simulation of the impact behaviour of a beam is presented to highlight the care one needs to exercise when using the more traditional Cowper-Symonds equation. The present constitutive equation has shown to be accurate for a wide range of strains, stresses and strain rates.

Formability of Sheet Metals (금속판재의 성형성)

  • 이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.11-23
    • /
    • 1994
  • Formability of sheet metals can be evaluated using tensile testing. Easily measured tensile properties such as yield strength, tensile strength, elongation, strain hardening exponent, strain rate sensitivity and plastic strain ratio are important parameters to evaluated the sheet formability. This paper briefly explains how these properties are related to deep drawability and stretchability. The plastic anisotropy of sheet metals is usually attributed to the crystallographic texture. However dislocation distribution may influence the anisotropy.

A Study on the Delamination Growth in Composite Laminates Subjected to Low-Velocity Impact (저속 충격을 받는 복합 재료 적층판의 층간 분리 성장에 관한 연구)

  • 장창두;송하철;김호경;허기선;정종진
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.55-59
    • /
    • 2002
  • Delamination means that cracking occurs on the interface layer between composite laminates. In this paper, to predict the delamination growth in composite laminates subjected to low-velocity impact, the unit load method was introduced, and an eighteen-node 3-D finite element analysis, based on assumed strain mixed formulation, was conducted. Strain energy release rate, necessary to determine the delamination growth, was calculated by using the virtual crack closure technique. The unit load method saves the computation time more than the re-meshing method. The virtual crack closure technique enables the strain energy release rate to be easily calculated, because information of the singular stress field near the crack tip is not required. Hence, the delamination growth in composite laminates that are subjected to low-velocity impact can be efficiently predicted using the above-mentioned methods.

A Study on the Consolidation Characteristics According to the Continuous Loading Consolidation Test (연속재하 압밀실험에 의한 압밀특성에 관한 연구)

  • 채영수;우승우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.59-66
    • /
    • 1999
  • ILT proposed by Tezaghi was frequently used which is based on one dimensional consolidation theory. But this test require time longer than a week and has problems for extra soft clay such as the squeezing around the consolidation ring. Also consolidation curve is not clearly defined since only a few data is obtained in a test. Therefore it is difficult to determine Pc and the interpretation to determine the consolidation constants are rather complicated. In this paper, the stress-strain relationship and consolidation constant obtained by CRS and CG-test were analyzed and compared with the results by ILT.

  • PDF