• Title/Summary/Keyword: rate of cement dust

Search Result 24, Processing Time 0.022 seconds

Properties of Matrix According to the Replacement Ratio of Portland Cement-based Carbonation Sluge (시멘트 기반 탄화슬러지 치환율에 따른 경화체의 특성)

  • Kang, Yong-Mo;Lee, Hye-Eun;Lee, Sang Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.189-190
    • /
    • 2021
  • Recently, the spread of intense social distancing and untact culture due to COVID-19 has increased the time spent indoors. In addition, according to the International Cancer Institute, fine dust was classified as a first-class carcinogen, a substance found to be carcinogenic, such as asbestos and benzene. As a result, interest in indoor air quality is increasing, and many studies are underway to reduce air pollutants. This study is a basic experiment of a board made to improve indoor air quality. The basic characteristics of the board, flexural strength and compressive strength, are analyzed and the results of the test are as follows. Experiments have shown that flexural strength and compressive strength tend to decrease as the replacement rate of hydrocarbons increases. It is believed that the strength of the sludge has decreased due to the increase in internal voids due to the increase in non-surface area, volume and diameter of microfiber as it undergoes the carbonation process. In addition, it is believed that the amount of moisture needed for curing during the mixing process was reduced due to the absorption of hydrocarbons.

  • PDF

Noncement-based Hydroball Evaluation of Permeable Block Strength Properties (무시멘트 기반 하이드로볼을 활용한 투수블록의 강도 특성)

  • Hwang, Woo-Jun;Lee, Chang-Woo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.207-208
    • /
    • 2022
  • Since 1960, the green area has decreased due to rapid urbanization and the artificial surface has increased, and the repair and water function of the previous surface has decreased due to the decrease in rainwater absorption capacity. In addition, the risk of carbon dioxide and fine dust is emerging due to the use of fossil fuels due to urbanization. As a result, permeable blocks, an eco-friendly product, are in the spotlight. Therefore, this study was conducted to examine the strength properties of the permeable block using a hydroball. As a result of the experiment, the flexural strength and compressive strength tended to decrease as the hydroball replacement rate increased. It is judged that the hydroball absorbs a large amount of moisture during the mixing process and lacks moisture required for curing, resulting in a decrease in strength. According to KS F 4419, since the hydroball replacement rate is satisfied up to 20%, further research is needed to analyze the adsorption performance of air pollutants in the future and evaluate their utilization as a permeable block in the future.

  • PDF

Evaluation of NOx Reduction Performance by Photocatalytic (TiO2) Coating of Cement Mortar Mixed with Zeolite and Activate Hwangtoh (제올라이트와 활성 황토를 혼입한 시멘트 모르타르의 광촉매(TiO2) 코팅에 따른 NOx 저감성능평가)

  • Park, Jang-Hyun;Kim, Hyeok-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.483-489
    • /
    • 2020
  • Particulate matter is divided into PM10 (particle diameter of 10 ㎛ or less) and PM2.5 (particle diameter of 2.5 ㎛ or less), which are approximately 1/5 of the thickness of the hair. Due to its effect on the human body, lung disease, arteriosclerosis and heart It is known as a carcinogen that causes various diseases such as diseases. It is known that the main cause of such fine dust is nitrogen dioxide (NOx), which is emitted from automobiles in about 57.3% of urban roadsides. Therefore, in this study, as part of the development of functional construction materials to reduce NOx generated from road transport pollutants, comparative evaluation of NOx reduction performance was conducted according to the replacement rate of cement mortar in which cement was replaced with a porous material. In addition, the NOx reduction performance of cement mortar according to the photocatalyst application method and the number of applications was compared an d evaluated. As a result of the experiment, when activated ocher was substituted by 30%, it showed a reduction effect of about 32.7%, showing the best reduction performance.

The Influence of Fine Particles under 0.08 mm Contained in Aggregate on the Characteristics of Concrete (골재 중 0.08 mm 이하 미립분의 종류가 콘크리트의 특성에 미치는 영향)

  • Song, Jin-Woo;Choi, Jae-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.347-354
    • /
    • 2013
  • Recently, crushed fine aggregates are being widely used due to the shortage of natural sand. In Korea, the amount of fine particles under 0.08 mm contained in crushed fine aggregates is restricted to be less than 7%, which is similar to the regulations of ASTM but is still very strict compared to the regulations of the other nations. In addition, the crushed aggregates already have in them about 20% of fine particles under 0.08 mm which occurs while they are crushed. The fine particles are not easy to wash out, and also to maximize the use of resources it is deemed necessary to review the possibility of enhancing the limit of the amount of fine particles. Therefore, this study conducted experiments to analyze the characteristics of fine particles under 0.08mm and their influence on the properties of concrete. Experiments using silt and cohesive soil were also done for comparison. In the experiments on fine particles, the methylene blue value was more in the soil dust contained in silt and cohesive soil than in the stone powder contained in crushed fine aggregates. Also, the methylene blue value had a close correlation with packing density and liquid & plastic limit. In the experiments done with concrete, the quantity of high range water reducing agent demanded to obtain the same slump increased as the fine particle substitution rate heightened. However, in the experiment which used stone powder testing the compressive strength and tensile strength of concrete in the same water-cement ratio, there was little change in strength with less than 20% addition of fine particles among the fine aggregates, and no meaningful difference in the amount of drying shrinkage of concrete.