• Title/Summary/Keyword: rate gyro

Search Result 107, Processing Time 0.019 seconds

Autopilot Design for a Target Drone using Rate Gyros and GPS

  • Rhee, Ihnseok;Cho, Sangook;Park, Sanghyuk;Choi, Keeyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.468-473
    • /
    • 2012
  • Cost is an important aspect in designing a target drone, however the poor performance of low cost IMU, GPS, and microcontrollers prevents the use of complex algorithms, such as ARS, or INS/GPS to estimate attitude angles. We propose an autopilot which uses rate gyro and GPS only for a target drone to follow a prescribed path for anti-aircraft training. The autopilot consists of an altitude hold, roll hold, and path following controller. The altitude hold controller uses vertical speed output from a GPS to improve phugoid damping. The roll hold controller feeds back yaw rate after filtering the dutch roll oscillation to estimate the roll angle. The path following controller operates as an outer loop of the altitude and roll hold controllers. A 6-DOF simulation showed that the proposed autopilot guides the target drone to follow a prescribed path well from the view point of anti-aircraft gun training.

Climbing Angle Estimation in Yawing Motion by UIO (UIO를 이용한 선회 시 등판각 추정)

  • Byeon, Hyeongkyu;Kim, Hyunkyu;Kim, Inkeun;Huh, Kunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.478-485
    • /
    • 2015
  • Availability of the climbing angle information is crucial for the intelligent vehicle system. However, the climbing angle information can't be measured with the sensor mounted on the vehicle. In this paper, climbing angle estimation system is proposed. First, longitudinal acceleration obtained from gyro-sensor is compared with the actual longitudinal acceleration of the vehicle. If the vehicle is in yawing motion, actual longitudinal acceleration can't be approximated from time derivative of wheel speed, because lateral velocity and yaw rate affect actual longitudinal acceleration. Wheel speed and yaw rate can be obtained from the sensors mounted on the vehicle, but lateral velocity can't be measured from the sensor. Therefore, lateral velocity is estimated using unknown input observer with nonlinear tire model. Simulation results show that the compensated results using lateral velocity and yaw rate show better performance than uncompensated results.

Evaluation of Inertial Measurement Sensors for Attitude Estimation of Agricultural Unmanned Helicopter (농용 무인 헬리콥터의 자세추정을 위한 관성센서의 성능 평가)

  • Bae, Yeonghwan;Oh, Minseok;Koo, Young Mo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.2
    • /
    • pp.79-84
    • /
    • 2014
  • The precision aerial application of agricultural unmanned helicopters has become a new paradigm for small farms with orchards, paddy, and upland fields. The needs of agricultural applications require easy and affordable control systems. Recent developments of MEMS technology based on inertial sensors and high speed DSP have enabled the fabrication of low-cost attitude system. Therefore, this study evaluates inertial MEMS sensors for estimating the attitude of an agricultural unmanned helicopter. The accuracies and errors of gyro and acceleration sensors were verified using a pendulum system. The true motion values were calculated using a theoretical estimation and absolute encoder measurement of the pendulum, and then the sensor output was compared with reference values. When comparing the sensor measurements and true values, the errors were determined to be 4.32~5.72%, 3.53~6.74%, and 3.91~4.16% for the gyro rate and x-, z- accelerations, respectively. Thus, the measurement results confirmed that the inertial sensors are effective for establishing an attitude and heading reference system (AHRES). The sensors would be constructed in gimbals for the estimating and proving attitude measurements in the following paper.

A Study on the DBS Receive Tracking Antenna Apparatus on a Ship by the Az/El Mount (Az/El 마운트에 의한 선박용 DBS 수신추적안테나 장치에 관한 연구)

  • 최조천;양규식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.2
    • /
    • pp.209-220
    • /
    • 1997
  • DBS offers actual services to mass-media and communication system of very broad region in information society. Especially, the DBS is the only system to access TV broadcasting service on a sailing ship. But the ship's DBS receiver is required a complex antenna tracking system because ships are under complex moving such as pitch, roll, and yaw etc. This study is motivated to develop a tracking antenna system to receive the koreasat on small silo ship. Therefore, this system is researched to small size, light weight, simple operation, and low cost of the product. The mount structure have been a compact size and easy operation to the Az/El 2-axis type which is operated by step motor. And it is very useful on a ship in the around sea of korean peninsula. The antenna has a plate type of micro-strip array, and is a domestic production. The vibration sensor is selected to gyro sensor of ultra-sonic rate type for ship's moving control. Tracking method is used the step-tracking algorithm, and the ship's moving compensation is adapted to the closed loop control method by ship's moving detection of gyro sensor. Tracking test is operated by the ship's moving simulator, we examined the actual receiving state on sailing shipboard in the near sea of korean peninsular.

  • PDF

A Study on Error Analysis of Dual-Axis Rotational Inertial Navigation System Based on Ring Laser Gyroscope (링레이저 자이로 기반 2축 회전형 관성항법장치 오차해석에 대한 연구)

  • Kim, Cheon-Joong;Yu, Hae-Sung;Lee, In-Seop;Oh, Ju-Hyun;Lee, Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.921-933
    • /
    • 2018
  • There is a method to enhance the pure navigation performance of INS(Inertial Navigation System) through the rotation of inertial measurement unit to compensate error sources of inertial sensors each other and that INS using this principle of operation is called rotational INS. In this paper, the exact error analysis of rotational INS based on ring laser gyro considering the coupling effect with gravity and earth rate is performed to evaluate the navigation performance by inertial sensor error sources. And error analysis and performance evaluation result confirmed by modelling and simulation is also proposed in this paper.

Integrated Navigation System Design of Electro-Optical Tracking System with Time-delay and Scale Factor Error Compensation

  • Son, Jae Hoon;Choi, Woojin;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 2022
  • In order for electro-optical tracking system (EOTS) to have accurate target coordinate, accurate navigation results are required. If an integrated navigation system is configured using an inertial measurement unit (IMU) of EOTS and the vehicle's navigation results, navigation results with high rate can be obtained. Due to the time-delay of the navigation results of the vehicle in the EOTS and scale factor errors of the EOTS IMU in high-speed and high dynamic operation of the vehicle, it is much more difficult to have accurate navigation results. In this paper, an integrated navigation system of EOTS which compensates time-delay and scale factor error is proposed. The proposed integrated navigation system consists of vehicle's navigation system which provides time-delayed navigation results, an EOTS IMU, an inertial navigation system (INS), an augmented Kalman filter and integration Kalman filter. The augmented Kalman filter outputs navigation results, in which the time-delay of the vehicle's navigation results is compensated. The integration Kalman filter estimates position, velocity, attitude error of the EOTS INS and accelerometer bias, accelerometer scale factor error, gyro bias and gyro scale factor error from the difference between the output of the augmented Kalman filter and the navigation result of the EOTS INS. In order to check performance of the proposed integrated navigation system, simulations for output data of a measurement generator and land vehicle experiments were performed. The performance evaluation results show that the proposed integrated navigation system provides more accurate navigation results.

Research on Artificial Intelligence Based De-identification Technique of Personal Information Area at Video Data (영상데이터의 개인정보 영역에 대한 인공지능 기반 비식별화 기법 연구)

  • In-Jun Song;Cha-Jong Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.19-25
    • /
    • 2024
  • This paper proposes an artificial intelligence-based personal information area object detection optimization method in an embedded system to de-identify personal information in video data. As an object detection optimization method, first, in order to increase the detection rate for personal information areas when detecting objects, a gyro sensor is used to collect the shooting angle of the image data when acquiring the image, and the image data is converted into a horizontal image through the collected shooting angle. Based on this, each learning model was created according to changes in the size of the image resolution of the learning data and changes in the learning method of the learning engine, and the effectiveness of the optimal learning model was selected and evaluated through an experimental method. As a de-identification method, a shuffling-based masking method was used, and double-key-based encryption of the masking information was used to prevent restoration by others. In order to reuse the original image, the original image could be restored through a security key. Through this, we were able to secure security for high personal information areas and improve usability through original image restoration. The research results of this paper are expected to contribute to industrial use of data without personal information leakage and to reducing the cost of personal information protection in industrial fields using video through de-identification of personal information areas included in video data.

Gait Estimation System for Leg Diagnosis and Rehabilitation using Gyroscopes (하지 진단 및 재활을 위한 각속도계 기반 측정시스템)

  • Lee, Min-Young;Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.866-871
    • /
    • 2010
  • Gait analysis is essential for leg diagnosis and rehabilitation for the patients, the handicapped and the elderly. The use of 3D motion capture device for gait analysis is very common for gait analysis. However, this device has several shortcomings including limited workspace, visibility and high price. Instead, we developed gait estimation system using gyroscopes. This system provides gait information including the number of gaits, stride and walking distance. With four gyroscope (one for each leg's thigh and calf) outputs, the proposed gait modeling estimates the movements of the hip, the knees and the feet. Complete pedestrian localization is implemented with gait information and the heading angle estimated from the rate gyro and the magnetic compass measurements. The developed system is very useful for diagnosis and the rehabilitation of the pedestrian at the hospital. It is also useful for indoor localization of the pedestrians.

Pedestrian Gait Estimation and Localization using an Accelerometer (가속도 센서를 이용한 보행 정보 및 보행자 위치 추정)

  • Kim, Hui-Sung;Lee, Soo-Yong
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.279-285
    • /
    • 2010
  • This paper presents the use of 3 axis accelerometer for getting the gait information including the number of gaits, stride and walking distance. Travel distance is usually calculated from the double integration of the accelerometer output with respect to time; however, the accumulated errors due to the drift are inevitable. The orientation change of the accelerometer also causes error because the gravity is added to the measured acceleration. Unless three axis orientations are completely identified, the accelerometer alone does not provide correct acceleration for estimating the travel distance. We proposed a way of minimizing the error due to the change of the orientation. Pedestrian localization is implemented with the heading angle and the travel distance. Heading angle is estimated from the rate gyro and the magnetic compass measurements. The performance of the localization is presented with experimental data.

Covariance Analysis Study for KOMPSAT Attitude Determination System

  • Rhee, Seung-Wu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.70-80
    • /
    • 2000
  • The attitude knowledge error model is formulated for specifically KOMPSAT attitude determination system using the Lefferts/Markley/Shuster method, and the attitude determination(AD) error analysis is performed so as to investgate the on-board attitude determination capability of KOrea Multi-Purpose SATellite(KOMPSAT) using the covariance analysis method. Analysis results show there is almost no initial value effect on Attitude Determination (AD) error and the sensor noise effects on AD error are drastically decreased as is predicted because of the inherent characteristic of Kalman filter structure. However, it shows that the earth radiance effect of IR-sensor(earth sensor) and the bias effects of both IR-sensor and fine sun sensor are the dominant factors degrading AD error and gyro rate bias estimate error in AD system. Analysis results show that the attitude determination errors of roll, pitch and yaw axes are 0.056, 0.092 and 0.093 degrees, respectively. These numbers are smaller than the required values for the normal mission of KOMPSAT. Also, the selected on-orbit data of KOMPSAT is presented to demonstrate the designed AD system.

  • PDF