• Title/Summary/Keyword: ratcheting effect

Search Result 15, Processing Time 0.019 seconds

Bending ratcheting behavior of pressurized straight Z2CND18.12N stainless steel pipe

  • Wang, Lei;Chen, Gang;Zhu, Jianbei;Sun, Xiuhu;Mei, Yunhui;Ling, Xiang;Chen, Xu
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1135-1156
    • /
    • 2014
  • The ratcheting effect greatly challenges the design of piping components. With the assistance of the quasi-three point bending apparatus, ratcheting and the ratcheting boundary of pressurized straight Z2CND18.12N stainless steel pipe under bending loading and vertical displacement control were studied experimentally. The characteristics of progressive inelastic deformation in axial and hoop directions of the Z2CND18.12N stainless steel pipes were investigated. The experiment results show that the ratcheting strain occurs mainly in the hoop direction while there is less ratcheting strain in the axial direction. The characteristics of the bending ratcheting behavior of the pressure pipes were derived and compared under load control and displacement control, respectively. The results show that the cyclic bending loading and the internal pressure affect the ratcheting behavior of the pressurized straight pipe significantly under load control. In the meantime, the ratcheting characteristics are also highly associated with the cyclic displacement and the internal pressure under displacement control. All these factors affect not only the saturation of the ratcheting strain but the ratcheting strain rate. A series of multi-step bending ratcheting experiments were conducted under both control modes. It was found that the hardening effect of Z2CND18.12N stainless steel pipe under previous cyclic loadings no matter with high or low displacement amplitudes is significant, and the prior loading histories greatly retard the ratcheting strain and its rate under subsequent loadings. Finally, the ratcheting boundaries of the pressurized straight Z2CND18.12N stainless steel pipe were determined and compared based on KTA/ASME, RCC-MR and the experimental results.

Influence of stress level on uniaxial ratcheting effect and ratcheting strain rate in austenitic stainless steel Z2CND18.12N

  • Chen, Xiaohui;Chen, Xu;Chen, Haofeng
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.89-94
    • /
    • 2018
  • Uniaxial ratcheting behavior of Z2CND18.12N austenitic stainless steel used nuclear power plant piping material was studied. The results indicated that ratcheting strain increased with increasing of stress amplitude under the same mean stress and different stress amplitude, ratcheting strain increased with increasing of mean stress under the same stress amplitude and different mean stress. Based on least square method, a suitable method to arrest ratcheting by loading the materials was proposed, namely determined method of zero ratcheting strain rate. Zero ratcheting strain rate occur under specified mean stress and stress amplitudes. Moreover, three dimensional ratcheting boundary surface graph was established with stress amplitude, mean stress and ratcheting strain rate. This represents a graphical surface zone to study the ratcheting strain rates for various mean stress and stress amplitude combinations. The graph showed the ratcheting behavior under various combinations of mean and amplitude stresses. The graph was also expressed with the help of experimental results of certain sets of mean and stress amplitude conditions. Further, experimentation cost and time can be saved.

Effect of local wall thinning on ratcheting behavior of pressurized 90° elbow pipe under reversed bending using finite element analysis

  • Chen, Xiaohui;Chen, Xu
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.931-950
    • /
    • 2016
  • Ratcheting deformation of pressurized Z2CND18.12N stainless steel $90^{\circ}$ elbow pipe with local wall thinning subjected to constant internal pressure and reversed bending was studied using finite element analysis. Chen-Jiao-Kim (CJK) kinematic hardening model, which was used to simulate ratcheting behavior of pressurized $90^{\circ}$ elbow pipe with local wall thinning at extrados, flanks and intrados, was implemented into finite element software ANSYS. The local wall thinning was located at extrados, flanks and intrados of $90^{\circ}$ elbow pipe, whose geometry was rectangular cross-section. The effect of depth, axial length and circumferential angle of local wall thinning at extrados, flanks and intrados on the ratcheting behaviors of $90^{\circ}$ elbow pipe were studied in this paper. Three-dimensional elastic-plastic analysis with Chen-Jiao-Kim (CJK) kinematic hardening model was carried out to evaluate structural ratcheting behaviors. The results indicated that ratcheting strain was generated mainly along the hoop direction, while axial ratcheting strain was relatively small.

Effects of temperature on the ratcheting behavior of pressurized 90° elbow pipe under force controlled cyclic loading

  • Chen, Xiaohui;Wang, Xingang;Chen, Xu
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.473-485
    • /
    • 2017
  • Ratcheting behavior of $90^{\circ}$ elbow piping subject to internal pressure 20 MPa and reversed bending 20 kN was investigated using experimental method. The maximum ratcheting strain was found in the circumferential direction of intrados. Ratcheting strain at flanks was also very large. Moreover, the effect of temperature on ratcheting strain of $90^{\circ}$ elbow piping was studied through finite element analysis, and the results were compared with room condition ($25^{\circ}$). The results revealed that ratcheting strain of $90^{\circ}$ elbow piping increased with increasing temperature. Ratcheting boundary of $90^{\circ}$ elbow piping was determined by Chaboche model combined with C-TDF method. The results revealed that there was no relationship between the dimensionless form of ratcheting boundary and temperature.

Finite element analysis of ratcheting on beam under bending-bending loading conditions

  • Sk. Tahmid Muhatashin Fuyad;Md Abdullah Al Bari;Md. Makfidunnabi;H.M. Zulqar Nain;Mehmet Emin Ozdemir;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.23-31
    • /
    • 2024
  • Ratcheting is the cyclic buildup of inelastic strain on a structure resulting from a combination of primary and secondary cyclic stress. It can lead to excessive plastic deformation, incremental collapse, or fatigue. Ratcheting has been numerically investigated on a cantilever beam, considering the current study's primary and secondary bending loads. In addition, the effect of input frequency on the onset of ratcheting has been investigated. The non-linear dynamic elastic-plastic approach has been utilized. Analogous to Yamashita's bending-bending ratchet diagram, a non-dimensional ratchet diagram with a frequency effect is proposed. The result presents that the secondary stress values fall sequentially with the increase of primary stress values. Moreover, a displacement amplification factor graph is also established to explain the effect of frequency on ratchet occurrence conditions. In terms of frequency effect, it has been observed that the lower frequency (0.25 times the natural frequency) was more detrimental for ratchet occurrence conditions than the higher frequency (2 times the natural frequency) due to the effect of dynamic displacement. Finally, the effect of material modeling of ratcheting behavior on a beam is shown using different hardening coefficients of kinematic hardening material modeling.

Low cycle fatigue and ratcheting failure behavior of AH32 steel under uniaxial cyclic loading

  • Dong, Qin;Yang, Ping;Xu, Geng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.671-678
    • /
    • 2019
  • In this paper, the low cycle fatigue failure and ratcheting behavior, as well as their interaction of AH32 steel were experimentally investigated under uniaxial cyclic loading. The effects of mean stress, stress amplitude and stress ratio on the low cycle fatigue life and ratcheting strain were discussed. It was found that the ratcheting strain increased while the fatigue life decreased with the increase of mean stress and stress amplitude, and the increasing stress ratio would result in smaller ratcheting and larger fatigue life. Two kinds of failure modes, i.e. low cycle fatigue failure due to crack propagates and ratcheting failure due to large plastic strain will take place respectively. Based on the experimental results, considered the effect of ratcheting on fatigue life, a model with the maximum stress and ratcheting strain rate was proposed. Comparison with the experimental result showed that the new model provided a good prediction for AH32 steel.

Ratcheting assessment of austenitic steel samples at room and elevated temperatures through use of Ahmadzadeh-Varvani Hardening rule

  • Xiaohui Chen;Lang Lang;Hongru Liu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.601-614
    • /
    • 2023
  • In this study, the uniaxial ratcheting effect of Z2CND18.12N austenitic stainless steel at room and elevated temperatures is firstly simulated based on the Ahmadzadeh-Varvani hardening rule (A-V model), which is embedded into the finite element software ABAQUS by writing the user material subroutine UMAT. The results show that the predicted results of A-V model are lower than the experimental data, and the A-V model is difficult to control ratcheting strain rate. In order to improve the predictive ability of the A-V model, the parameter γ2 of the A-V model is modified using the isotropic hardening criterion, and the extended A-V model is proposed. Comparing the predicted results of the above two models with the experimental data, it is shown that the prediction results of the extended A-V model are in good agreement with the experimental data.

Multiaxial ratcheting assessment of Z2CND18.12N steel using modified A-V hardening rule

  • Xiaohui Chen;Yang Zhou;Wenwu Liu;Xu Zhao
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.1-17
    • /
    • 2023
  • Based on Ahmadzadeh-Varvani hardening rule (A-V model), multiaxial ratcheting effect of Z2CND18.12N austenitic stainless steel is simulated by ABAQUS with user subroutine UMAT. The results show that the predicted results of the origin multiaxial A-V model are lower than the experimental data, and it is difficult to control ratcheting strain rate. In order to improve the predicted capability of A-V model, the A-V model is modified. In this study. Moreover, under the assumption of the von Mises yield criterion and normal plasticity flow rule, we develop a numerical algorithm of plastic strain with the improved model to implement the finite element calculation of the model. Internal iteration in the numerical algorithm was implemented with the Euler backward method, which calculated the trial strain for each equilibrium iteration using the consistent tangent matrix. With a user subroutine, the proposed model is programmed into ABAQUS for a user - executable version. By simulating the uniaxial ratcheting of a round bar made of Z2CND18.12N austenitic stainless steel, we observe that the predicted results simulated by ABAQUS with UMAT are compared with the experimental data. The predicted results of the improved multiaxial A-V model are consistent well with the experimental data.

Constitutive model for ratcheting behavior of Z2CND18.12N austenitic stainless steel under non-symmetric cyclic stress based on BP neural network

  • Wang, Xingang;Chen, Xiaohui;Yan, Mingming;Chang, Miaoxin
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.517-525
    • /
    • 2018
  • The specimens made by Z2CND18.12N austenitic stainless steel were conducted on a 100 kN closed loop servo hydraulic tension-compression testing machine with a digital controller. Uniaxial tension and uniaxial ratcheting effect tests were carried out at $25^{\circ}C$. Moreover, Uniaxial tension tests were conducted at $150^{\circ}C$, $250^{\circ}C$ and $350^{\circ}C$. Based on these experimental data, the prediction models of stress-strain curve and the relationship of ratcheting strain and number of cycles were established by the algorithm principle of BP neural network. The results indicated that the predicted results of neural network model were in well agreement with experimental data. It was found that the BP neural network model had high validity and accuracy.