• 제목/요약/키워드: rat striatum

검색결과 110건 처리시간 0.023초

HPLC-ECD에 의한 흰쥐 뇌 부위별 Catecholamine 및 대사산물의 신속정량법 (Determination of Catecholamines and Their Metabolites in Rat Brain by High Performance Liquid Chromatography with Electrochemical Detector)

  • 노일협
    • 약학회지
    • /
    • 제32권1호
    • /
    • pp.50-54
    • /
    • 1988
  • A simple and sensitive method was studied for the simultaneous determination of catecholamine, indoleamine and their related metabolites by high performance liquid chromatography with electrochemical detector. Norepinephrine, dopamine, serotonin and their metabolites of 3,4-dihydroxyphenylacetic acid, homovanillic acid, 5-indoleacetic acid were resolved from rat brain tissue homogenates by separation on reversed phase $C_{18}$ column with mobile phase consisting of monochloroacetate buffer (pH2.47), 1.42mM sodium octyl sulfonate and 7% acetonitrile. Both catechols and indoles can be eluted in 15min. The sensitivities of this method are sufficient for determination of at least 100 pg of neurochemical amines in brain samples, for example, frontal cortex, olfactory bulb, striatum, septum, hippocampus, thalamus, hypothalamus, medulla & pons and cerebellum. The highest level of dopamine was observed in striatum whereas norepinephrine and serotonin were in hypothalamus.

  • PDF

Dopamine Modulates Corticostriatal Synaptic Transmission through Both $D_1$ and $D_2$ Receptor Subtypes in Rat Brain

  • Lee, Hyun-Ho;Choi, Se-Joon;Kim, Ki-Jung;Cho, Hyeong-Seok;Kim, Seong-Yun;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권5호
    • /
    • pp.263-268
    • /
    • 2005
  • Striatum has important roles in motor control, habitual learning and memory. It receives glutamatergic inputs from neocortex and thalamus, and dopaminergic inputs from substantia nigra. We examined effects of dopamine (DA) on the corticostriatal synaptic transmission using in vitro extracellular recording technique in rat brain corticostriatal slices. Synaptic responses were elicited by stimulation of cortical glutamatergic inputs on the corpus callosum and recorded in the dorsal striatum. Corticostriatal population spike (PS) amplitudes were decreased ($39.4{\pm}7.9$%) by the application of $100{\mu}M$ DA. We applied receptor subtype specific agonists and antagonists and characterized the modulation of corticostriatal synaptic transmission by different DA receptor subtypes. $D_2$ receptor agonist (quinpirole), antagonist (sulpiride), and $D_1$ receptor antagonist (SKF 83566), but not $D_1$ receptor agonist (SKF 38393), induced significantly the reduction of striatal PS. Pretreatment neither with SKF 83566 nor sulpiride significantly affected corticostriatal synaptic inhibition by DA. However, the inhibition of DA was completely blocked by pretreatment with mixed solution of both SKF 83566 and sulpiride. These results suggest that DA inhibits corticostriatal synaptic transmission through both $D_1$ and $D_2$ receptors in concert with each other.

Transcriptomic Analysis of Rat Brain Tissue Following Gamma Knife Surgery: Early and Distinct Bilateral Effects in the Un-Irradiated Striatum

  • Hirano, Misato;Shibato, Junko;Rakwal, Randeep;Kouyama, Nobuo;Katayama, Yoko;Hayashi, Motohiro;Masuo, Yoshinori
    • Molecules and Cells
    • /
    • 제27권2호
    • /
    • pp.263-268
    • /
    • 2009
  • Gamma knife surgery (GKS) is used for the treatment of various human brain disorders. However, the biological effects of gamma ray irradiation on both the target area, and the surrounding tissues are not well studied. The effects of gamma ray exposure to both targeted and untargeted regions were therefore evaluated by monitoring gene expression changes in the unilateral irradiated (60 Gy) and contralateral un-irradiated striata in the rat. Striata of irradiated and control brains were dissected 16 hours post-irradiation for analysis using a whole genome 44K DNA oligo microarray approach. The results revealed 230 induced and 144 repressed genes in the irradiated striatum and 432 induced and 239 repressed genes in the unirradiated striatum. Out of these altered genes 39 of the induced and 16 of the reduced genes were common to both irradiated and un-irradiated tissue. Results of semiquantitative, confirmatory RT-PCR and western blot analyses suggested that ${\gamma}$-irradiation caused cellular damage, including oxidative stress, in the striata of both hemispheres of the brains of treated animals.

일산화탄소 중독이 뇌내 아미노산 신경전달물질 함량변화에 미치는 영향 (The Effect of Carbon Monoxide Intoxication on the Changes in Contents of Amino Acid Neurotransmitter of Rat Brain)

  • 정민정;박송자;이선희;윤재순
    • 약학회지
    • /
    • 제34권5호
    • /
    • pp.323-333
    • /
    • 1990
  • To study influence of carbonmonoxide (CO) poisoning on the content of amino acid neurotransmitter in brain, male rat was exposed to CO 5000 ppm for 30 minutes (60-75% HbCO). Aspartic acid and glutamic acid level in the cerebral cortex and aspartic acid level in the striatum were significantly decreased. GABA level in the cerebral cortex was significantly increased after the 30 and 60 minutes of CO intoxication. Taurine level in both the cerebral cortex and the striatum was increased although nonsignificant. Consequently, the CO-induced hypoxia brain showed lower level of excitatory neurotransmitter, aspartic acid and glutamic acid and higher level of inhibitory neurotransmitter, GABA and taurine. These results suggest that the change in content of amino acid neurotransmitter in the rat brain may be concerned with several CO poisoning symptoms.

  • PDF

인삼사포인 성분이 에탄올을 투여한 쥐의 뇌 Aldehyde Dehydrogenase 활성에 미치는 영향 (The Effect of Saponins of Panax ginseng C.A. Meyer on Brain Aldehyde Dehydrogenase Activity of Ethanol Administered Rat)

  • 이영돈;주충노
    • Journal of Ginseng Research
    • /
    • 제18권1호
    • /
    • pp.1-9
    • /
    • 1994
  • Sprague-Dawley rats were given freely with 15% ethanol (control) and 15% ethanol containing (1) 0.1% ginseng saponin, (2) 0.02% ginsenoside $Rb_1$, and (3) $Rg_1$ (tests) instead of water for 7 days and aldehyde dehydrogenase (ALDH) and monoamine oxidase (MAO) activity in different regions of brain were examined. In control group, total ALDH activity with indoleacetaldehyde and acetaldehyde as substrate in all different regions was lower than that of normal group except in the hippocampus. The inhibitory effect on the activity was prominent in the corpus striatum and was not in the hippocampus. However, low-$K_m$ ALDH activity in all different regions was much lower than that of normal group. A considerable decrease in mitochondria ALDH activity in cerebellum and striatum was also observed in control group. In test groups total, low-$K_m$, and mitochondria AkDH activities in all different regions were higher than those in control group. Although ALDH activity in the striatum of test group was higher than control group, it was relatively depressed as compared with normal. There was not found a remarkable difference in extent of stimulating effect on the AkDH activity according to the ginseng saponin components. When biogenic aldehydes were used as substrate, ALDH activity with 3,4-dihydroxy-phenylacetaldehyde (DOPAL) in all brain regions of control group was lower than that using 5-hydroxy-indoleacetaldehyde (HIAL) and 3,4-dihydroxyphenylglycolaldehyde (NORAL) as substrate. In control group, ALDH activity with biogenic aldehydes above mentioned was markedly inhibited in the striatum contrary to other regions. The higher ALDH activity with biogenic aldehydes in test group than in control was found in the striatum, cerebrum, and cerebellum. MAO activity in the cerebellum was inhibited in control group and slightly increased in test group. The results of present study suggest that the corpus striatum is significantly affected by ethanol exposure while the hippocampus is not and that ginseng saponin fraction and ginsenosid es might have a preventive effect against depression of brain ALDH activity by chronic administration of ethanol.

  • PDF

Extremely Low Frequency Magnetic Field Modulates the Level of Neurotransmitters

  • Chung, Yoon Hee;Lee, Young Joo;Lee, Ho Sung;Chung, Su Jin;Lim, Cheol Hee;Oh, Keon Woong;Sohn, Uy Dong;Park, Eon Sub;Jeong, Ji Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권1호
    • /
    • pp.15-20
    • /
    • 2015
  • This study was aimed to observe that extremely low frequency magnetic field (ELF-MF) may be relevant to changes of major neurotransmitters in rat brain. After the exposure to ELF-MF (60 Hz, 2.0 mT) for 2 or 5 days, we measured the levels of biogenic amines and their metabolites, amino acid neurotransmitters and nitric oxide (NO) in the cortex, striatum, thalamus, cerebellum and hippocampus. The exposure of ELF-MF for 2 or 5 days produced significant differences in norepinephrine and vanillyl mandelic acid in the striatum, thalamus, cerebellum and hippocampus. Significant increases in the levels of serotonin and 5-hydroxyindoleacetic acid were also observed in the striatum, thalamus or hippocampus. ELF-MF significantly increased the concentration of dopamine in the thalamus. ELF-MF tended to increase the levels of amino acid neurotransmitters such as glutamine, glycine and ${\gamma}$-aminobutyric acid in the striatum and thalamus, whereas it decreased the levels in the cortex, cerebellum and hippocampus. ELF-MF significantly increased NO concentration in the striatum, thalamus and hippocampus. The present study has demonstrated that exposure to ELF-MFs may evoke the changes in the levels of biogenic amines, amino acid and NO in the brain although the extent and property vary with the brain areas. However, the mechanisms remain further to be characterized.

Inhibitory Modulation of 5-Hydroxytryptamine on Corticostriatal Synaptic Transmission in Rat Brain Slice

  • Choi, Se-Joon;Chung, Won-Soon;Kim, Ki-Jung;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권6호
    • /
    • pp.295-301
    • /
    • 2003
  • Striatum plays a crucial role in the movement control and habitual learning. It receives an information from wide area of cerebral cortex as well as an extensive serotonergic (5-hydroxytryptamine, 5-HT) input from raphe nuclei. In the present study, the effects of 5-HT to modulate synaptic transmission were studied in the rat corticostriatal brain slice using in vitro extracellular recording technique. Synaptic responses were evoked by stimulation of cortical glutamatergic inputs on the corpus callosum and recorded in the dorsal striatum. 5-HT reversibly inhibited coticostriatal glutamatergic synaptic transmission in a dose-dependent fashion (5, 10, 50, and $10{\mu}M$), maximally reducing in the corticostriatal population spike (PS) amplitude to $40.1{\pm}5.0$% at a concentration of $50{\mu}M$ 5-HT. PSs mediated by non-NMDA glutamate receptors, which were isolated by bath application of the NMDA receptor antagonist, d,l-2-amino-5-phospohonovaleric acid (AP-V), were decreased by application of $50{\mu}M$ 5-HT. However, PSs mediated by NMDA receptors, that were activated by application of zero $Mg^{2+}$ aCSF, were not significantly affected by $50{\mu}M$ 5-HT. To test whether the corticostriatal synaptic inhibitions by 5-HT might involve a change in the probability of neurotransmitter release from presynaptic nerve terminals, we measured the paired-pulse ratio (PPR) evoked by 2 identical pulses (50 ms interpulse interval), and found that PPR was increased ($33.4{\pm}5.2$%) by 5-HT, reflecting decreased neurotransmitter releasing probability. These results suggest that 5-HT may decrease neurotransmitter release probability of glutamatergic corticostriatal synapse and may be able to selectively decrease non-NMDA glutamate receptor-mediated synaptic transmission.

Striatal Glutamate and GABA after High Frequency Subthalamic Stimulation in Parkinsonian Rat

  • Lee, Kyung Jin;Shim, Insop;Sung, Jae Hoon;Hong, Jae Taek;Kim, Il sup;Cho, Chul Bum
    • Journal of Korean Neurosurgical Society
    • /
    • 제60권2호
    • /
    • pp.138-145
    • /
    • 2017
  • Objective : High frequency stimulation (HFS) of the subthalamic nucleus (STN) is recognized as an effective treatment of advanced Parkinson's disease. However, the neurochemical basis of its effects remains unknown. The aim of this study is to investigate the effects of STN HFS in intact and 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rat model on changes of principal neurotransmitters, glutamate, and gamma-aminobutyric acid (GABA) in the striatum. Methods : The authors examined extracellular glutamate and GABA change in the striatum on sham group, 6-OHDA group, and 6-OHDA plus deep brain stimulation (DBS) group using microdialysis methods. Results : High-pressure liquid chromatography was used to quantify glutamate and GABA. The results show that HFS-STN induces a significant increase of extracellular glutamate and GABA in the striatum of 6-OHDA plus DBS group compared with sham and 6-OHDA group. Conclusion : Therefore, the clinical results of STN-HFS are not restricted to the direct STN targets but involve widespread adaptive changes within the basal ganglia.

Human Embryonic Stem Cell Transplantation in Parkinson′s Disease (PD) Animal Model: II. In Vivo Transplantation in Normal or PD Rat Brain

  • Choe Gyeong-Hui;Ju Wan-Seok;Kim Yong-Sik;Kim Eun-Yeong;Park Se-Pil;Im Jin-Ho
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.19-19
    • /
    • 2002
  • This study was to examine whether the in vitro differentiated neural cells derived from human embryonic stem (hES, MB03) cells can be survived and expressed tyrosin hydroxylase(TH) in grafted normal or PD rat brain. To differentiate in vitro into neural cells, embryoid bodies (EB: for 5 days, without mitogen) were formed from hES cells, neural progenitor cells(neurosphere, for 7-10 days, 20 ng/㎖ of bFGF added N2 medium) were produced from EB, and then finally neurospheres were differentiated into mature neuron cells in N2 medium(without bFGF) for 2 weeks. In normal rat brain, neural progenitor cells or mature neuron cells (1×10/sup 7/ cells/㎖) were grafted to the striatum of normal rats. After 2 weeks, when the survival of grafted hES cells was examined by immunohistochemical analysis, the neural progenitor cell group indicated higher BrdU, NeuN+, MAP2+ and GFAP+ than mature neuron cell group in grafted sites of normal rats. This result demonstrated that the in vivo differentiation of grafted hES cells be increased simultaneously in both of neuronal and glial cell type. Also, neural progenitor cell grafted normal rats expressed more TH pattern than mature neuron cells. Based on this data, as a preliminary test, when the neural progenitor cells were grafted into the striatum of 6-hydroxydopamine lesioned PD rats, we confirmed the cell survival (by double staining of Nissl and NeuN) and TH expression. This result suggested that in vitro differentiated neural progenitor cells derived from hES cells are more usable than mature neuron cells for the neural cell grafting in animal model and those grafted cells were survived and expressed TH in normal or PD rat brain.

  • PDF

식이 지방산 및 비타민 E 보충 식이가 흰쥐의 뇌조직 부위별 항산화 비타민 농도에 미치는 영향 (Effect of Dietary Fatty Acids and Vitamin E Supplementation on Antioxidant Vitamin Status of the Second Generation Rat Brain Sections)

  • 박정화;황혜진;김미경;이양자
    • Journal of Nutrition and Health
    • /
    • 제34권7호
    • /
    • pp.754-761
    • /
    • 2001
  • Effects of dietary fatty acids and vitamin E on antioxidant vitamin status were studied in rat brain sections. Sources of dietary fat(10t%) were safflower oil(SO) poor in $\omega$3 fatty acid and mixed oil (MO) with computer-adjustd fatty acid ratios(AA/DHA=1.4, $\omega$6/$\omega$3=6.3, P/M/S=1.0/1.5/1, AA=2.%)with (ME) and without(MO) vitamin E(500mg/kg diet). Rats were fed the three kinds of diet from 3-4 wks prior to the conception. At the age of 3 & 9wks of the 2nd generation rat, antioxidant vitamins were measured in frontal cortex(FC), corpus striatum (CS), cerebellum(CB) and hippocampus(HP) using a multiwavelength, reverse phase gradient HPLC system. The levels of antioxidant vitamins converged to the similar value in all groups at 9 wks of age. Retinol, lycopene and cryptoxanthin levels of all experimental groups were found to be the highest in hippocampus at both 3 & 9wks of age. The levels of vitamin E appeared to be higher in the order of HP>CS-CB>FC in MO & ME. Beta-carotene and retinol showed the lowest level in hippocampus of vitamin E supplemented groups, even though vitamin E level tended to be higher in other sections. It seemed that vitamin E has an inhibitory action on the uptake of beta-carotene or acts as a preferred antioxidant to beta-carotene in certain section of the brain. By improving fatty acid balance (AA/DHA = 1.4, $\omega$6/$\omega$3=6.3, P/M/S=1.0/1.5/1, AA = 2%), the levels of vitamin E, retinol, lycopene & beta=carotene tended to be higher in MO than in SO, although crytoxanthin became lower at 3wks of age. In short, dietary fatty acids and vitamin E have different influence on antioxidant vitamin status in different rat brain sections. The higher levels of antioxidant vitamins in hippocampus should be pursued further in relation to behavioral development of rats.

  • PDF