• Title/Summary/Keyword: rat liver model

Search Result 206, Processing Time 0.02 seconds

Structure-dependent Mechanism of Action of Poly Aromatic Hydrocarbons in Cultured Primary Hepatocytes (간세포에서 PAH의 구조 의존적 작용기전)

  • Kim Sun-Young;Hong Sung-Bum;Yang Jae-Ho
    • Toxicological Research
    • /
    • v.22 no.1
    • /
    • pp.23-30
    • /
    • 2006
  • Among poly aromatic hydrocarbons, dioxin and PCBs are the most controversial environmental pollutants in our modern life. These pollutants are known as human carcinogens, and liver is the most sensitive target in animal cancer models. Specific aims of the study were focused on the mechanism of carcinogenesis in hepatocytes and the structure-activity relation among these diverse environmental chemicals. Because key mechanisms of dioxin-induced carcinogenesis in human epithelial cell model are the alteration of signal transduction pathway and PKC isoforms, the alteration of the signal transduction pathways and other factors associated with carcinogenesis were studied. Rat hepatocytes cultured under the sandwich protocols were exposed with the various concentration of dioxins and PCBs, and signal transduction pathway, protein kinase C isoforms, oxidant stress, and apoptotic nuclei were evaluated. Since it is important to understand the structure-activity relation among these chemicals to properly assess the carcinogenic potentials, the study analyzed the parameters associated with carcinogenic processes, based on their structural characteristics. In addition, signal transduction pathways and PKC isoforms involved in inhibition of UV-induced apoptosis were also analyzed to elaborate the tumor promotion mechanism of these chemicals. Induction of apoptosis by UV irradiation was optimal at $60\;J/m^2$ in primary hepatocyte in culture. Compared to non coplanar PCBs such as PCB 114 and PCB 153, coplanar PCBs such as PCB 77 and PCB126 showed a stronger inhibition of apoptosis induced by UV irradiation. Production of reactive oxygen species (ROS) was more stimulated by non-coplanar PCBs than coplanar PCBs with the most potent induction of ROS by chlorinated non-coplanar PCB. As compared to the level of induction by PCB126, non-coplanar PCB153 showed a higher increase of intracellular concentrations. Besides the alteration of intracellular calcium concentration, translocation of PKC from cytosolic fraction to membrane fraction was clearly observed upon the exposure of non-coplanar PCB. Taken together, the present study demonstrated that there is a potent structure-activity relationship among PCB congeners and the mechanism of PAH-induced carcinogenesis is structure-specific. The study suggested that more diverse pathways of PAH-induced carcinogenesis should be taken into account beyond the boundary of Ah receptor dogma to assess the health impact of PAH with more accuracy.

The Preventive Effect of Bacillus polyfermenticus KJS-2 and Bacillus mojavensis KJS-3 on Triton WR-1339-induced Hyperlipidemia (Triton WR-1339로 유도된 고지혈증에 대한 Bacillus polyfermenticus KJS-2와 Bacillus mojavensis KJS-3의 예방효과)

  • Lee, Jin Young;Lee, Seung Jae;Kim, Hyung Hoi;Kang, Jae Seon
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.346-355
    • /
    • 2021
  • The purpose of this study was to evaluate the possibility that administration of Bacillus polyfermenticus KJS-2 (BP2), Bacillus mojavensis KJS-3 (Moja3), and their mixtures could control serum lipid levels. We observed changes in the blood cell level, metabolic function evaluation, and blood lipid levels after two weeks of oral administration of these microbial strains to hyperlipidemia-induced rats. Measurements of major cell changes in the white blood cells (WBC) indicated no significant effects due to the administration of the microbial strains. Platelet (PLT) levels decreased by 18.4% in the Triton WR-1339-treated group (NCON) and recovered to the control (CON) group levels in the positive control (PCON) group and the microbial strain-administered groups (p<0.05). No functional changes were observed in red blood cells (RBC) by Triton WR-1339-induced hyperlipidemia. The blood AST, ALT, BUN, and creatinine levels did not indicated effects on liver and kidney function, and all rats administered the microbial mixture recovered. The blood lipid levels in the microbe-treated groups indicated reduced levels of triglyceride (TG) and total cholesterol (TC), and increased levels of serum HDL cholesterol. The HMG-CoA inhibition rate of 7-O-succinyl macrolactin A (SMA) produced by BP2 showed similar activity at a concentration of 1,000 times lower than that achieved with atorvastatin. The administration of the microbial strains to the Triton WR-1339-induced rat model of hyperlipidemia resulted in reduced weight gain without affecting the food and water intake. Thus, blood circulation can be improved by controlling serum lipid levels by the combined administration of the BP2 and Moja3 microbial strains.

Effects of Sunbanghwalmyung-Eum Gamibang on MIA-Induced Osteoarthritis in Rats (흰쥐에서 MIA로 유발된 골관절염에 선방활명음 가미방이 미치는 영향)

  • You Bin, Shin;Han Byeol, Park;Jae Su, Kim;Hyun Jong, Lee;Sung Chul, Lim;Yun Kyu, Lee
    • Korean Journal of Acupuncture
    • /
    • v.39 no.4
    • /
    • pp.152-171
    • /
    • 2022
  • Objectives : This study was designed to investigate the effects of Sunbanghwalmyung-eum gamibang on Monosodium iodoacetate-induced osteoarthritis rats. Methods : Forty Sprague-Dawley (SD) rats were divided into 5 groups of 8 rats each. Osteoarthritis (OA) was induced by injecting MIA (2 mg/50 µl) into the joint cavity of the left knee of SD rats belonging to the experimental group, and normal saline was injected into the joint cavity of the left knee instead of MIA in the normal group. To the normal group and the controlled group (OA group), 2 ml of distilled water was orally administered. To the positive control group (Indomethacin group), indomethacin 2 ml at a concentration of 2 mg/kg, to the low concentration group of SHG (Low group), 2 ml of SHG at a concentration of 2 mg/kg, and to the high concentration group of SHG (High group), 2 ml of SHG at a concentration of 4 mg/kg ml was orally administered. The drug was administered for a total of 4 weeks, and histological changes were analyzed by Hematoxylin-Eosin staining and Safranin-O staining. In addition, inflammatory cytokines such as TNF-α, IL-1β, and IL-6, and MMP-13, TIMP-1, and GAGs were immunohistochemically analyzed. Finally, hematological examination, blood biochemical examination, and liver and kidney biopsy were performed. Results : SHG groups (Low and High) inhibited the matrix destruction and damage of the knee joint cartilage in SD rat model, and significantly prevented the reduction in cartilage thickness. In SHG groups, the expressions of TNF-α, IL-1β, IL-6 and MMP-13 were significantly decreased, and the expressions of TIMP-1, GAGs were significantly increased compared with OA group. The safety indicators had no significant differences among five groups. Conclusions : These results show that SHG has cartilage protection capacity, anti-inflammatory effect.

Beneficial Effects of Acanthopanax senticosus Extract in Type II Diabetes Animal Model via Down-Regulation of Advanced Glycated Hemoglobin and Glycosylation End Products (제2형 당뇨 동물모델에서 가시오가피 추출물의 당화혈색소 및 최종당화산물 억제를 통한 혈당조절 효과)

  • Kwon, Han Ol;Lee, Minhee;Kim, Yong Jae;Kim, Eun;Kim, Ok-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.7
    • /
    • pp.929-937
    • /
    • 2016
  • The purpose of this study was to investigate the effect of Acanthopanax senticosus extract (ASE) (ethanol : DW=1:1, v/v) on inhibition of type 2 diabetes using an OLETF rat model via regulation of HbA1c and AGEs levels. Supplementation with ASE 0.1% and 0.5% effectively lowered levels of glucose, insulin, oral glucose tolerance test, and Homa-insulin resistance, suggesting reduced insulin resistance. Blood levels of HbA1c and AGEs were significantly reduced in a dose-dependent manner. As oxidative stress plays a key role in accelerating production of HbA1c and AGEs, which worsen symptoms of type 2 diabetes, levels of malonaldehyde and pro-inflammatory cytokines were measured. Lipid peroxidation in both blood and liver tissues was significantly reduced, and induction of pro-inflammatory cytokines interleukin-${\beta}$ and tumor necrosis factor-${\alpha}$, which elevate production of HbA1c and AGEs, was inhibited (P<0.05). To evaluate the possible cellular events after AGEs receptor activation, genetic expression of protein kinase C (PKC)-${\delta}$ and transforming growth factor (TGF)-${\beta}$ was measured by real-time polymerase chain reaction. Supplementation with both ASE 0.1% and 0.5% significantly inhibited mRNA expression of PKC-${\delta}$ and TGF-${\beta}$, indicating that ASE may have beneficial effects on preventing insulin-resistant cells or tissues from progressing to diabetic complications. Taken together, ASE has potential to improve type 2 diabetes by inhibiting insulin resistance and protein glycosylation, including production of HbA1c and AGEs. Anti-oxidative activities of ASE are a main requisite for reducing production of HbA1c and AGEs and are also related to regulation of the PKC signaling pathway, resulting in suppression of TGF-${\beta}$, which increases synthesis of collagen, prostaglandin, and disease-related proteins.

The Antioxidative Activity of Glutathione-Enriched Extract from Saccharomyces cerevisiae FF-8 in In Vitro Model System (In Vitro 과산화지질에 미치는 glutathione 고함유 효모 Saccharomyces cerevisiae FF-8의 항산화효과)

  • Lee Chi-Hyeoung;Cha Jae-Young;Jun Bang-Sil;Lee Ho-Jun;Lee Young-Chun;Cho Yong-Lark;Cho Young-Su
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.819-825
    • /
    • 2005
  • The Antioxidative accvities of the cell free extracts containing high glutathione by Saccharomyces cerevisiae FF-8 were tested in vitro experimental models : DPPH method for radical scavenging activity, ferric TBA method and ferric thiocyanate method using linoleic acid and tissue microsome for lipid peroxidation inhibitions. The concentration of intercellular glutathione by cultivating S. cerevisiae FF-8 in the YM optimal medium obtained $204\mug/ml$, which was increased by 2.76-fold from $74\mug/ml$ in the YM basal medium. A comparition between the YM basal medium and the YM optimal medium on antioxidative substance produced by S. cerevisiae FF-8 was investigated. In DPPH ($\alpha, \alpha-diphenyl-\beta-picrylhydrazyl$) method, the electron donating activity of the glutathione produced by S. cerevisiae FF-8 cultured in the YM optimal medium was as high as that of BHT ($ 0.05\%w/v $). The antioxidative a.tivity was measured by inhibition against lipid peroxidation of rat tissues' microsomes. The results of anti-oxidant activity of the cell free extracts by S. rerevisiae FF-8 cultured in the YM optimal medium was shown in the following order . $ liver 60.98\% > kidney 56.43\% > heart 52.91\% > brain 52.13\% > testis 45.57\% > spleen 42.95\% $. In antioxidative activities determined by ferric thiocyanate method and TBA methods against lipid peroxidation, the lipid peroxidation in the control mixture increased more rapidly than the typical peroxidation curve of linoleic acid from one day. The antioxidative activity of the cell free extracts by cultivating S. cerevisine FF-8 in the YM optimal medium were higher than that of the YM basal medium. These data indicate that the cell free extracts containing a high intercellular glutathione of S. cerevisiae FF-8 cultured in YM optimal medium showed strong antioxidative capacities by DPPH radical scavenging activity and ferric thiocyanate and TBARS measurements.

Effect of Chitosan-Trimer on the Prevention of Postoperative Intraperitoneal Adhesion Formation in Rats (랫트에서 Chitosan-Trimer가 복강유착에 미치는 영향)

  • Kwon, Eun-ju;Jang, Kwang-ho;Jang, In-ho
    • Journal of Veterinary Clinics
    • /
    • v.18 no.3
    • /
    • pp.257-264
    • /
    • 2001
  • This study was performed to investigate the effects of chitosan-trimer (CT) on the prevention of postoperative adhesion formation in the rate model. All animals divided into PBS (control), 1% CT, 3% CT, and chitin treated group. The mean adhesion score in 1% CT group (1.03$\pm$0.63), 3% CT group (0.64$\pm$0.53) and chitin group (1.67$\pm$0.71) was found to be lower than that in control group (2.07$\pm$0.81). More favorable adhesion prevention was achieved in 3% CT group (0.64$\pm$0.53) in comparison with the control group, 1% CT group, and chitin group without any hemorrhagic complications. A statistically significant difference was observed in adhesion formation between control group and 3% CT group (p<0.001). In control group, 44 of 45 sites (97.7%) formed adhesions between the intestine defects. In contrast, 3% CT was effective in reducing the incidence of adhesion formation to 17 to 45 sites (62.2%) (p<0.05). The locations of adhesions were observed in serosa-serosa (60%), serosa-mesentery (13.3%), serosa-connective tissue of testis (10%), omentum-liver (10%), serosa-omentum (3.3%), serosa-cecum (3.3%), and serosa-incision (0%). On the results of histological analysis, grade of inflammation and fibrosis at the sites of postoperative peritoneal adhesion formation were not significantly different in all groups. But, 3% CT showed the lowest score of inflammation and fibrosis. In 3% CT group, the rate of increase of plasma fibrinogen was significantly lower compared with that in control group from pre-operation to 10 days later (p<0.05). There were no appreciable difference in the CBC, leukocyte differential counts and total protein concentrations among four groups. In conclusion, our data suggested that CT should be effective on reducing adhesion formation in experimental rat models. The results also showed that 3% CT does not adversely affect normal wound healing and healthy recovery after operation.

  • PDF