DOI QR코드

DOI QR Code

The Antioxidative Activity of Glutathione-Enriched Extract from Saccharomyces cerevisiae FF-8 in In Vitro Model System

In Vitro 과산화지질에 미치는 glutathione 고함유 효모 Saccharomyces cerevisiae FF-8의 항산화효과

  • 이치형 (동아대학교 응용생명공학부) ;
  • 차재영 (동아대학교 응용생명공학부) ;
  • 전방실 (동아대학교 응용생명공학부) ;
  • 이호준 (한국식품연구원) ;
  • 이영춘 (동아대학교 응용생명공학부) ;
  • 최용락 (동아대학교 응용생명공학부) ;
  • 조영수 (동아대학교 응용생명공학부)
  • Published : 2005.10.01

Abstract

The Antioxidative accvities of the cell free extracts containing high glutathione by Saccharomyces cerevisiae FF-8 were tested in vitro experimental models : DPPH method for radical scavenging activity, ferric TBA method and ferric thiocyanate method using linoleic acid and tissue microsome for lipid peroxidation inhibitions. The concentration of intercellular glutathione by cultivating S. cerevisiae FF-8 in the YM optimal medium obtained $204\mug/ml$, which was increased by 2.76-fold from $74\mug/ml$ in the YM basal medium. A comparition between the YM basal medium and the YM optimal medium on antioxidative substance produced by S. cerevisiae FF-8 was investigated. In DPPH ($\alpha, \alpha-diphenyl-\beta-picrylhydrazyl$) method, the electron donating activity of the glutathione produced by S. cerevisiae FF-8 cultured in the YM optimal medium was as high as that of BHT ($ 0.05\%w/v $). The antioxidative a.tivity was measured by inhibition against lipid peroxidation of rat tissues' microsomes. The results of anti-oxidant activity of the cell free extracts by S. rerevisiae FF-8 cultured in the YM optimal medium was shown in the following order . $ liver 60.98\% > kidney 56.43\% > heart 52.91\% > brain 52.13\% > testis 45.57\% > spleen 42.95\% $. In antioxidative activities determined by ferric thiocyanate method and TBA methods against lipid peroxidation, the lipid peroxidation in the control mixture increased more rapidly than the typical peroxidation curve of linoleic acid from one day. The antioxidative activity of the cell free extracts by cultivating S. cerevisine FF-8 in the YM optimal medium were higher than that of the YM basal medium. These data indicate that the cell free extracts containing a high intercellular glutathione of S. cerevisiae FF-8 cultured in YM optimal medium showed strong antioxidative capacities by DPPH radical scavenging activity and ferric thiocyanate and TBARS measurements.

항산화물질인 glutathione (${\gamma}$-L-glutamyl-cysteinyl-glycine) 고함유 효모 Saccharomyces cerevisiae FF-8에서 생산된 glutathione을 함유한 세포 추출액의 항산화 활성을 in vitro 과산화지질 실험계인 DPPH($a,{\;}\acute{a}-diphenyl-\beta-picrylhydrazyl$)법, linoleic acid를 이용한 ferric thiocyanate법과 TBA법 및 microsome 생체막 지질 과산화물 생성정도의 TBARS법으로 측정하였다. YM 최적 배지에서 생산된 glutathione 농도는 $204\mug/ml$로 YM 기본배지에서 생산된 glutathione 농도 $74\mug/ml$보다 2.76배 증가하였다. 본 실험에서는 YM 기본배지와 최적배지에서 S. cerevisiae FF-8이 생산하는 glutathione 함량에 따른 항산화 활성을 비교하였다. DPPH 측정법에서는 짙은 자색의 탈색되는 정도로 나타내는 전자 공여능이 glutathione 함량이 높은 최적 생산배지에서 S. cerevisiae FF-8가 생산하는 glutathione고함유 세포 추출액에서 대조구인 $ 0.05\%BHT $와 비슷한 수준으로 항산화 활성이 높게 나타났다. 각 조직 microsome을 이용한 생체막 지질 과산화 억제정도는 최적 생산배지에서 전체적으로 높게 나타났으며, 간장 $60.98\%$, 신장 $56.43\%$, 심장 $52.91\%$, 뇌 $52.13\%$, 고환$45.57\%$ 및 비장 $42.95\%$순으로 나타났다 Linoleic acid 산화 실험계를 이용한 ferric thiocyanate법에서는 최적 생산배지가 반응 7일째까지 대조구에 비해 강한 항산화 활성을 보였으며, TBA법에서는 반응 5일째까지 최적 생산배지가 YM 배지보다는 높은 항산화 활성을 나타내었다 이상의 결과에서 Saccharomyces cerevisiae FF-8 균주가 glutathione을 생산하는 최적배지 조건에서 생산된 glutathione 고함유 세포 추출액은 in vitro 항산화 실험계인 DPPH radical scavenging activity, ferric thiocyanate and TBARS 측정에서 항산화 활성을 나타내는 생리활성 성분을 지닌 것으로 나타나 천연 항산화제로서의 사용 가능성을 시사하였다.

Keywords

References

  1. Abe, N., T. Murata and A. Hirota. 1998. Novel DPPH radical scavengers, bisorbicillinol and demethyitrichodimeroI, from a fungus. Biosei. Biotheenol. Bioehem. 62, 661-666
  2. Al-Saikhan, M. S., L. R. Howard and J. C. Miller Jr. 1995. Antioxidant activity and total pheno;ics in different genotypes of potato (Solanum tuberosum 1.). J. Food Sci. 60, 341-343 https://doi.org/10.1111/j.1365-2621.1995.tb05668.x
  3. Berhane, K, M. Widersten, A. Engstrom, J. W. Kozarich and B. Mannervik. 1994. Detoxication of base propenals and other ${\alpha}$, ${\beta}$-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferase. Proc. NatI. Acad, Sci. USA, 91, 1480-1484
  4. Bertelsen, G., C. Christophersen, P. H. Nielsen, H. J. Madsen and P. Stadel. 1995. Chromatographic isolation of antioxidants guided by a methyl linoleate assay. J. Agric. Food Chem. 43, 1272-1275 https://doi.org/10.1021/jf00053a027
  5. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Natu. 26, 1199-1200
  6. Brand-Williams, w., M. E. Cuvelier, C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28, 25-30 https://doi.org/10.1016/S0023-6438(95)80008-5
  7. Cha, J. Y., Y. Mameda, K. Oogami, K Yamamoto and T. Yanagita. 1998. Association between hepatic triacylglycerol accumulation induced by administering orotic acid and enhanced phosphatidate phosphohydrolase activity in rats. Biosci. Biotechnol. Biochem. 62, 508-513 https://doi.org/10.1271/bbb.62.508
  8. Cha, J. Y, H. J. Kim, B. S. Jun, J. C. Park, M. Ok and Y. S. Cho . 2003. Antioxidative activities and produced condition of antioxidative substance by Bacillus sp. FF-8. J. Korean Soc. Agric. Chem. Biotechnol. 46, 165-170
  9. Cha, J. Y., J. C. Park, B. S. Jeon, Y. C. Lee and Y. S. Cho. 2004. Optimal fermentation conditions for enhanced glutathione production by Saccharomyces cerevisiae FF-8. J. Microbiol. 42, 51-5
  10. Decker, E. and H. Faraji. 1990. Inhibition of lipid oxidation by carnosine. JAOCS 67, 650-652 https://doi.org/10.1007/BF02540416
  11. Farmer, E. H., A. Bloomfield, A. Sundralingan and D. A. Sutton. 1942. The couse and mechanism of autoxidation reactions in olefinic and polyolefinic substances, including rubber. Trans Faraday Soc. 38, 348-356 https://doi.org/10.1039/tf9423800348
  12. Goto, S., K. Yoshida, T. Morikawa, Y. Urata, K. Suzuki and T. Kondo. 1995. Augmentation of transport for cisplatinglutathione adduct in cisplatin-resistant cancer cells. Cancer Res. 55, 4297-4301
  13. Grant, C. M. 2001. Role of the glutathione/ glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol. Microbial. 39, 533-541 https://doi.org/10.1046/j.1365-2958.2001.02283.x
  14. Halliwell, B. and J. M. C. Gutteridge. 1990. Role of free radicals and catalyticmetal ions in human disease: an overview. Methods in Enzymol. 186, 1-85 https://doi.org/10.1016/0076-6879(90)86093-B
  15. Ishikawa, Y., K Morimoto and T. Hamashaki. 1985. --- . J. Food Sci. 50, 1742-1744 https://doi.org/10.1111/j.1365-2621.1985.tb10579.x
  16. Jamieson, D. J. 1998. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14, 1511-1527 https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
  17. Kato, F., J. Nakazato, A. Murata, S. Okamoto and Y. Yone. 1986. Utilization of waste fish treatment with microorganisms. Part II. Use of waste fish from large scale production of fermented fish meal and its feed efficiency. Nippon Nogeikagaku Kaishi 60, 287-293 https://doi.org/10.1271/nogeikagaku1924.60.287
  18. Kim, W. G., J. P. Kim and I. D. Yoo. 1996. Benzastatins A, B, C, and D: new free radical scavengers from Streptomyces nitrosporeus 30643. II. Structural determination. J. Antibiotics 49, 26-30 https://doi.org/10.7164/antibiotics.49.26
  19. Lowry, O.H., N. J. Rosebrough, A. J. Farr and R. S. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275
  20. Meister, A. and S. S. Tate. 1976. Glutathione and related ${\gamma}$-glutamyl compounds: biosynthesis and utilization. Ann. Rev. Biochem. 45, 559 - 604 https://doi.org/10.1146/annurev.bi.45.070176.003015
  21. Ohkawa, H., N. Ohishi and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-358 https://doi.org/10.1016/0003-2697(79)90738-3
  22. Pacifici, R. E. and K. J. Davies. 1991. Protein, lipid, and DNA repair systems in oxidative stress: the free-radical theory of aging revisited. Gerontal. 37, 166-180 https://doi.org/10.1159/000213257
  23. Park, J. C., O. Min, J. Y. Cha and Y. S. Cho. 2003. Isolation and identification of the glutathione producing Saccharomyces cerevisiae FF-8 from Korean traditional rice wine and optimal producing conditions. J. Korean Soc. Agric. Chem. Biotechnol. 46, 348-352
  24. Perego, P., J. V. Weghe, D. W. Ow and S. B. Howell. 1997. Role of determinants of cadmium sensitivity in the tolerance of Schizosaccharomyces pombe to cisplatin. Molecul. Pharmacal. 51, 12-18
  25. Rashid, M. H., F. Kato and A. Murata. 1992. Effect of Microorganism on the Peroxidation of Lipid and Fatty Acid composition of fermented Fish Meal. Biosci. Biotechnol. Biochem. 56, 1058-1061 https://doi.org/10.1271/bbb.56.1058
  26. Sakato, K. and H. Tanaka, 1992. Advanced control of glutathione fermentation process. Biotechnol. Bioeng. 40, 904-912 https://doi.org/10.1002/bit.260400806
  27. Shi, H., J. G. Hudson and K. J. Liu. 2004. Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radic. Biol. Med. 37, 582-593 https://doi.org/10.1016/j.freeradbiomed.2004.03.012
  28. Sollod, C. C., A. E. Jenns and M. E. Daub. 1992. Cell surface redox potential as a mechanism of defense against photosensitizers in fungi. Appl. Environ. Microbial. 58, 444-449
  29. Stephen, D. W. and D. J. Jamieson. 1996. Glutathione is an important antioxidant molecule in the yeast Saccharomyces cerevisiae. FMES Microbial. Lett 141, 207-212 https://doi.org/10.1111/j.1574-6968.1996.tb08386.x
  30. Wei, G., Y. Li and J. Chen. 2003. Effect of surfactants on extracellular accumulation of glutathione by Saccharomyces cerevisiae. Process Biochem. 38, 1133-1138 https://doi.org/10.1016/S0032-9592(02)00249-2
  31. Xin, Z., K. S. Song and M. R. Kim. 2004. Antioxidant activity of salad vegetables grown in Korean. J. Food Sci. Nutr. 9, 289-294 https://doi.org/10.3746/jfn.2004.9.4.289

Cited by

  1. RETRACTED: Effect of fermentedAngelicae gigantisRadix on carbon tetrachloride-induced hepatotoxicity and oxidative stress in rats vol.34, pp.2, 2012, https://doi.org/10.3109/08923973.2011.600765
  2. Production of Glutathione by the Yeast Mutant Saccharomyces cerevisiae Sa59 vol.45, pp.6, 2013, https://doi.org/10.9721/KJFST.2013.45.6.801
  3. Culture Conditions for Glutathione Maximum Production by Saccharomyces cerevisiae FF-8 in Bioreactor vol.18, pp.5, 2008, https://doi.org/10.5352/JLS.2008.18.5.620