• Title/Summary/Keyword: rat astrocytes

Search Result 89, Processing Time 0.021 seconds

Effect of task-specific training on Eph/ephrin expression after stroke

  • Choi, Dong-Hee;Ahn, Jin-Hee;Choi, In-Ae;Kim, Ji-Hye;Kim, Bo-Ram;Lee, Jongmin
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.635-640
    • /
    • 2016
  • Recent evidence indicates that the ephrin receptors and ephrin ligands (Eph/ephrin) expression modulate axonal reorganization and synaptic plasticity in stroke recovery. To investigate the effect of task-specific training (TST) on Eph/ephrin expression in the corticospinal tract (CST) after stroke, we compared Eph/ephrin expression in the peri-infarct cortex, pyramid, and spinal cord of a photothrombotic stroke model of rat brains treated with or without TST. The TST treatment showed significantly better recovery in the behavioral tests compared with no treatment. The significant upregulation of ephrin-A1 and ephrin-A5 observed in activated astrocytes of the CST at 2 weeks' post-stroke was decreased by TST. At 5 weeks, post-stroke, the elevated ephrin-A5 levels were decreased in the ipsilateral pyramid and spinal cord by TST. Glial fibrillary acidic protein was upregulated concomitantly with the altered ephrin expression after stroke, and the expression of these proteins was attenuated by TST. These data suggest that TST alters the expression of ephrin ligands in the CST after stroke.

GFAP IMMUNOREACTIVITY IN TRIGEMINAL GANGLION SATELLITE CELLS AFTER PULP EXPOSURE IN RAT (흰쥐에서 치수노출 후 삼차신경절의 신경절아교세포에서 GFAP-IR의 변화)

  • Kim, Heung-Jung;Moon, Joo-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.782-791
    • /
    • 1997
  • Glial fibrillary acidic protein(GFAP) are a group of intermediate filaments that are distributed in the cytoplasm of many type of glial cells. The purpose of this study was to determine change of GFAP immunoreactivity(GFAP-IR) in rat trigeminal ganglion satellite cells in response to pulp exposure. The immunohistochemistry was carried out using the avidinbiotin-peroxidase complex(ABC) method and subsequently stained with AEC(3-aminoethyl-9-carbasol). 1. Contol group; Central root astrocytes had strong GFAP-IR, but ganglion satellite cells occasionlly had GFAP-IR. This reaction patterns of ganglion satellite cells was not concenturated in any specific region of trigeminal ganglion. 2. Three day pulp exposure group; There was a highly GFAP-IR in satellite cells of trigeminal ganglion in maxillary region. GFAP-IR in neighboring mandibular and ophthalmic regions was less intense compared to maxillary region. 3. Seven day pulp exposure group; In this group, GFAP-IR that was increased compared to control group was seen in the maxillary region. But GFAP-IR was less intense compared to three day pulp exposure group. These results suggest that GFAP in satellite cell increase in specific region of trigeminal ganglion after pulp exposure and offer useful tool in trigeminal pain research.

  • PDF

The Non-Canonical Effect of N-Acetyl-D-Glucosamine Kinase on the Formation of Neuronal Dendrites

  • Lee, HyunSook;Cho, Sun-Jung;Moon, Il Soo
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.248-256
    • /
    • 2014
  • N-acetylglucosamine kinase (GlcNAc kinase or NAGK; EC 2.7.1.59) is a N-acetylhexosamine kinase that belong to the sugar kinase/heat shock protein 70/actin superfamily. In this study, we investigated both the expression and function of NAGK in neurons. Immunohistochemistry of rat brain sections showed that NAGK was expressed at high levels in neurons but at low levels in astrocytes. Immunocytochemistry of rat hippocampal dissociate cultures confirmed these findings and showed that NAGK was also expressed at low levels in oligodendrocytes. Furthermore, several NAGK clusters were observed in the nucleoplasm of both neuron and glia. The overexpression of EGFP- or RFP (DsRed2)-tagged NAGK in rat hippocampal neurons (DIV 5-9) increased the complexity of dendritic architecture by increasing the numbers of primary dendrites and dendritic branches. In contrast, knockdown of NAGK by shRNA resulted in dendrite degeneration, and this was prevented by the co-expression of RFP-tagged NAGK. These results suggest that the upregulation of dendritic complexity is a non-canonical function of NAGK.

Effects of Prenatal and Restraint Stress on Astrocytes of Amygdala Complex of Rat: I. Effects on the Astrocytic Cell Body (출생 전 스트레스와 감금 스트레스가 흰쥐 편도복합체 별아교세포에 미치는 영향: I. 별아교세포의 세포체에 미치는 영향)

  • Lee, Ji-Yong;Choi, Byoung-Young;Kim, Dong-Heui;Jung, Won-Sug;Cho, Byung-Pil;Yang, Young-Chul
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.213-219
    • /
    • 2008
  • The plasticity of nervous system is generated not only due to changes in neurons but also due to changes in neuroglial cells. Astrocyte is important for maintaining the normal brain function and controlling the neuronal functions. The amygdala receives an array of important sensory information of danger signals. This information is further transduced and integrated to produce the highly adaptive emotion, fear. In this study, morphometric changes in the cell bodies of astrocytes in the amygdala, induced by prenatal stress and restraint stress were examined. For this purpose. rats were classified into 4 groups; control group (CON), only restraint-stressed (starting on P90 for 3 days) group (CONR), prenatally-stressed group (PNS), and prenatally and restraint (on P90 for 3 days) stressed group (PNSR). Astrocytes were verified with anti-GFAP immunohistochemistry, counter stained with methylene blue/azure II and were examined using the Neurolucida. Results showed that astrocytes in the amygdala of PNS rats had significantly larger cell bodies than did CON rats and this was enhanced further by restraint stress. Thus this data showed that hypertrophy of the astrocytic cell bodies of amygdala complex is induced by prenatal and restraint stress.

The expression of interleukin-1β converting enzyme in experimental autoimmune encephalomyelitis (자기면역성 뇌척수염에서 interleukin-1β converting enzyme의 발현)

  • Moon, Chang-jong;Kim, Seung-joon;Lee, Yong-duk;Shin, Tae-kyun
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.538-544
    • /
    • 1999
  • To elucidate the involvement of interleukin-$1{\beta}$ converting enzyme (ICE) in the course of experimental autoimmune encephalomyelitis (EAE), we induced EAE by immunizing rats with an emulsion of rat spinal cord homogenate with complete Freund's adjuvant supplemented with Mycobacterium tuberculosis (H37Ra, 5mg/ml) and then examined the expression of ICE in the spinal cord of rats with EAE. In normal rat spinal cords, ICE is constitutively, but weakly, expressed in ependymal cells, neurons, and some neuroglial cells. In EAE, many inflammatory cells are positive for ICE, and the majority of ICE+ cells were identified as ED1+ macrophages. During this stage of EAE, the number of ICE+ cells in brain cells, including neurons and astrocytes, increased and these cells also had increased ICE immunoreactivity. These findings suggest that the upregulation of ICE in both brain cells and invading hematogenous cells is stimulated by a secretory product from inflammatory cells, and that this enzyme is involved in the pathogenesis of EAE via the production of IL-1 beta.

  • PDF

GFAP IMMUNOREACTIVITY IN SATELLITE CEllS OF TRIGEMINAL GANGLION FOllOWING AXOTOMY OF INFERIOR ALVEOLAR NERVE IN RAT (흰쥐에서 하치조신경 절단에 따른 삼차신경절 위성페포에서 GFAP-IR의 변화)

  • Lee, Chang-Seop;Lee, Sang-Ho;Kim, Heung-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.1
    • /
    • pp.249-256
    • /
    • 1998
  • Glial fibrillary acidic proteins (GFAP) are a group of intermediate filaments that are distributed in the cytoplasm of glial cells. GFAP immunoreactivity (GFAP-IR) increase after central and peripheral nerve injuries. The purpose of this study was to determine change of GFAP-IR in rat trigeminal ganglion satellite cells following the axotomy of inferior alveolar nerve(IAN). The immunohistochemistry was carried out using the avidin-biotin-peroxidase complex(ABC) method. 1. Control group : Astrocytes in central root of trigeminal ganglion had strong GFAP-IR, but satellite cells of trigeminal ganglion occasionally had GFAP-IR. The patterns of reactivity in satellite cells of trigeminal ganglion were not concenturated in any specific region of trigeminal ganglion. 2. Three day group after IAN axotomy : There were highly GFAP-IR in satellite cells of trigeminal ganglion in mandibular region. GFAP-IR in maxillary and ophthalmic regions were less intense compared to mandibular region. 3. Seven day group after IAN axotomy : GFAP-IR that were increased compared to control group were seen in the mandibular region. But GFAP-IR were less intense compared to three day group. These results suggest that GFAP-IR increase in specific region of trigeminal ganglion following peripheral axotomy. therefore we suppose that GFAP study offer research tool in trigeminal neuralgia.

  • PDF

Protective effects of Juglandis semen on amyloid-${\beta}$-induced neuronal toxicity and lipid peroxidation in rat astrocytes (흰쥐의 뇌 Astrocyte에서 amyloid-${\beta}$ 25-35로 유발된 세포 독성과 지질과산화에 대한 호도(胡桃)의 보호효과)

  • Jang, Mi-Kyung;Park, Jong-Hyuck;Jeong, Ji-Cheon;Kim, Cheorl-Ho;Yoon, Cheol-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.235-241
    • /
    • 2000
  • 호도(胡桃)(Juglandis semen)가 치매에 미치는 영향을 알아보기 위하여 치매(Alzheimer's disease) 유발물질로 알려진 amyloid-{$\beta}(A{\beta})$ 25-35를 흰쥐의 뇌 신경세포의 일종인 astrocyte에 처리한 후 뇌의 신경세포에 대한 독성 및 세포막에서의 지질 과산화에 미치는 영향을 검토하였다. 호도(胡桃)는 $A{\beta})$ 25-35로 인한 신경세포의 파괴를 억제하는 것으로 나타나 신경세포의 손상을 예방하고 보호하는 효과가 있었다. 그리고, 지질의 과산화 지표인 malondialdehyde 생성은 $A{\beta})$ 25-35 처리로 크게 증가하였으나, 호도(胡桃)의 전처리와 후처리로 크게 감소되어 호도(胡桃)가 세포막 파괴로 인한 뇌세포의 손상을 방지하는 것으로 나타났다. 이러한 결과들을 볼 때, 호도(胡桃)는 신경세포의 하나인 astrocyte에 대한 보호효과와 세포막에서 지질의 과산화를 저해 및 $A{\beta})$ 25-35 처리와 같은 치매 유발 독성에 대한 적응능력 향상을 통하여 뇌 신경세포를 보호하는 효과가 있음을 보여주는 것으로 노인성 치매 등의 임상적 응용에 그 효과가 기대된다.

  • PDF

Melatonin Induces Akt Phosphorylation through Melatonin Receptor- and PI3K-Dependent Pathways in Primary Astrocytes

  • Kong, Pil-Jae;Byun, Jong-Seon;Lim, So-Young;Lee, Jae-Jun;Hong, Sung-Jun;Kwon, Kwang-Jun;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.2
    • /
    • pp.37-41
    • /
    • 2008
  • Melatonin has been reported to protect neurons from a variety of neurotoxicity. However, the underlying mechanism by which melatonin exerts its neuroprotective property has not yet been clearly understood. We previously demonstrated that melatonin protected kainic acid-induced neuronal cell death in mouse hippocampus, accompanied by sustained activation of Akt, a critical mediator of neuronal survival. To further elucidate the neuroprotective action of melatonin, we examined in the present study the causal mechanism how Akt signaling pathway is regulated by melatonin in a rat primary astrocyte culture model. Melatonin resulted in increased astrocytic Akt phosphorylation, which was significantly decreased with wortmannin, a specific inhibitor of PI3K, suggesting that activation of Akt by melatonin is mediated through the PI3K-Akt signaling pathway. Furthermore, increased Akt activation was also significantly decreased with luzindole, a non-selective melatonin receptor antagonist. As downstream signaling pathway of Akt activation, increased levels of CREB phoshorylation and GDNF expression were observed, which were also attenuated with wortmannin and luzindole. These results strongly suggest that melatonin exerts its neuroprotective property in astrocytes through the activation of plasma membrane receptors and then PI3K-Akt signaling pathway.

Inhibitory Effects of Phylligenin on the Proliferation of Cultured Rat Neural Progenitor Cells

  • Lee, Sung-Hoon;Go, Hyo-Sang;Choi, Chang-Soon;Cheong, Jae-Hoon;Han, Sun-Young;Bae, Ki-Hwan;Ko, Kwang-Ho;Park, Seung-Hwa
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.48-55
    • /
    • 2010
  • Neural progenitor cells (NPCs) differentiate into astrocytes, neurons and oligodendrocytes, which is controlled by various factors in brain. Recent evidences suggest that small molecules modulating the proliferation and differentiation of NPCs may have therapeutic value as well as the potential use as chemical probes. Phylligenin is a lignan with anti-inflammatory activity that is isolated from the fruits of Forsythia koreana. We investigated effects of phylligenin on proliferation and differentiation of NPCs. Treatment of phylligenin decreased the number of proliferating NPCs in culture without effects on the differentiation and survival of neural cells such as neurons and astrocytes. To examine the mechanism of the decreased NPCs number, we performed cell cycle analysis. Proliferation of NPCs was decreased via G1-S transition block by phylligenin treatment, and it was mediated by the increase of p21 level. However, phylligenin did not induce apoptosis of NPCs as determined by TUNEL assay and PARP cleavage. We also found that viability of glioma cell lines such as C6 and U87MG glioma cells, but not that of primary neuron and astrocyte, was inhibited by phylligenin. These results suggest that phylligenin selectively inhibits proliferation of rapidly growing cells such as neural stem cells and glioma cells. Given that the possible role of brain tumor stem cells in the pathology of brain cancers, the inhibitory effects of phylligenin might be useful in the development of new therapeutic agents against brain cancers.

Effects of Root of Scutellariae Radix against Inflammatory Response in the Spinal Cord Contusion Injury in Rats (척수압박손상 흰쥐의 척수조직 염증반응에 황금(黃芩)이 미치는 영향)

  • Yang, Kee-Young;Choi, Won-Ik;Shin, Jung-Won;Park, Seong-Ha;Kim, Seong-Joon;Lee, Jong-Soo;Sohn, Nak-Won
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.3
    • /
    • pp.1-11
    • /
    • 2011
  • Objectives : This study was performed to evaluate the effects of root of Scutellariae Radix(SR) water extract against inflammatory response in the spinal cord injury(SCI). Methods : SCI was induced by mechanical contusion following laminectomy of 10th thoracic vertebra in Sprague-Dawley rat. SR was orally given once a day for 7days after SCI. Myeloperoxidase(MPO) positive neutrophils infiltration was examined. Inducible nitric oxide synthase(iNOS) and tumor necrosis factor-${\alpha}$(TNF-${\alpha}$) expressions were observed with immunohistochemistry. Glial fibrillary acidic protein(GFAP) positive astrocytes were examined using immuno-fluorescence. Results : 1. SR reduced MPO-positive neutrophils infiltration in peri-damage regions of the contusive SCI-induced rats. 2. SR reduced iNOS positive cells in the white matter of the contusive SCI-induced rats. 3. SR reduced TNF-${\alpha}$ positive cells in the gray and white matter of the contusive SCI-induced rats. 4. SR reduced cell number and size of astrocytes in peri-damage regions of the contusive SCI-induced rats. Conclusions : These results suggest that SR plays an inhibitory role against inflammatory response in the SCI.