• Title/Summary/Keyword: rapid sintering

Search Result 213, Processing Time 0.024 seconds

The Effect of PbO on Sintering of Undoped PbTiO3 Ceramics Prepared by Sol-Gel Processing (PbO가 Sol-Gel Process로 제조된 순수 PbTiO3 세라믹스의 소결에 미치는 영향)

  • 김선욱;윤만순;김남흥
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.335-340
    • /
    • 1992
  • Undoped PbTiO3 ceramics was successfully prepared by using sol-gel process, which had not been fabricated due to its microcracks created by anisotropic stress during phase transition from cubic to tetragonal phase. Fabrication of undoped PbTiO3 ceramics via sol-gel processing was very much affected by the PbO content of the samples as well as PbO vapor from sintering atmosphere. Excess PbO was found to promote rapid grain growth in PbTiO3 ceramics. After sintering at 1100$^{\circ}C$ average grain size of PbTiO3 ceramics with excess PbO was about 8 times greater than that of stoichiometric composition, which may be due to PbO liquid phase from excess PbO.

  • PDF

Effect of Process Parameters on Forming Characteristics of Selective Laser Sintered Fe-Ni-Cr Powder (Fe-Ni-Cr 분말의 선택적 레이저 소결 적층시 공정변수에 따른 조형특성)

  • Joo, B.D.;Jang, J.H.;Yim, H.S.;Son, Y.M.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.262-267
    • /
    • 2009
  • Selective laser sintering is a kind of rapid prototyping process whereby a three-dimensional part is built layer wise by laser scanning the powder. This process is highly influenced by powder and laser parameters such as laser power, scan rate, fill spacing and layer thickness. Therefore a study on fabricating Fe-Ni-Cr powder by selective laser sintering has been performed. In this study, fabrication was performed by experimental facilities consisting of a 200W fiber laser which can be focused to 0.08mm and atmospheric chamber which can control atmospheric pressure with argon. With power increase or energy density decrease, line width was decreased and line surface quality was improved with energy density increase. Surface quality of quadrangle structure was improved with fill spacing optimization.

Thermoelectric Properties of N-type 90% $Bi_2Te_3$+10% $Bi_2Se_3$ Thermoelectric Materials Produced by Melt spinning method and Sintering (Melt spinning법에 의한 n형 90% $Bi_2Te_3$+10% $Bi_2Se_3$ 열전소결체의 열전특성)

  • 김익수
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.50-56
    • /
    • 1998
  • A new process using rapid solidification (melt spinning method) followed by pressing and sintering was investigated to produce the n-type thermoelectric ribbons of 90% $Bi_2Te_3$+10% $Bi_2Se_3$ doped with $CdCl_2$. Quenched ribbons are very brittle and consisted of homogeneous $Bi_2Te_3-Bi_2Se_3$ pseudo-binary solid solutions. Property variations of the materials was investigated as a function of variables, such as dopant $CdCl_2$ quantity and sintering temperature. When the process parameters were optimized, the maximum figure of merit was $2.146{\times}10^{-3}K^{-1}$.

  • PDF

Spark-Plasma Sintering of Mechanically-alloyed NiAl Powder and Ball-milled (Ni+Al) Powder Mixture (기계적합금화 NiAl 분말과 볼밀혼합된 (Ni+Al) 분말의 방전플라즈마소결)

  • 장영일;김지순;안인섭;김영도;권영순
    • Journal of Powder Materials
    • /
    • v.7 no.3
    • /
    • pp.161-167
    • /
    • 2000
  • Mechanically-alloyed NiAl powder and ball-milled (Ni+Al) powder mixture were sintered by spark-plasma sintering(SPS) process. Mechanical alloying was performed in a horizontal attritor for 20 h with rotation speed of 600 rpm. (Ni+Al) powder mixtures were prepared by ball milling for 1 and 10 h with 120 rpm. Both powders were sintered at $1150^{\circ}C$ for 5 min under $10^{-3}$ torr vacuum with 50 MPa die pressure in a SPS facility. Sintered densities of 97% and 99% were obtained from mechanically-alloyed NiAl powder and (Ni+Al) powder mixture, respectively. The sintered compact of (Ni+Al) powder mixture showed large grain size by a very rapid grain growth, while the grain size of mechanically-alloyed NiAl powder compact after sintering was extremely fine(80 nm). The difference in densification behavior of both powders were discussed.

  • PDF

Enhanced Sintering Behavior and Electrical Properties of Single Phase BiFeO3 Prepared by Attrition Milling and Conventional Sintering

  • Jeon, Nari;Moon, Kyoung-Seok;Rout, Dibyranjan;Kang, Suk-Joong L.
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.485-492
    • /
    • 2012
  • Dense and single phase $BiFeO_3$ (BFO) ceramics were prepared using attrition milled calcined (coarse) powders of an average particle size of ${\approx}3{\mu}m$ by conventional sintering process. A relative density of ${\approx}96%$ with average grain size $7.3{\mu}m$ was obtained when the powder compacts were sintered at $850^{\circ}C$ even for a shorter duration of 10 min. In contrast, densification barely occurred at $800^{\circ}C$ for up to 12 h rather the microstruce showed the growth of abnormal grains. The grain growth behavior at different temperatures is discussed in terms of nonlinear growth rates with respect to the driving force. The sample sintered at $850^{\circ}C$ for 12 h showed enhanced electrical properties with leakage current density of $4{\times}10^{-7}A/cm^2$ at 1 kV/cm, remnant polarization $2P_r$ of $8{\mu}C/cm^2$ at 20 kV/cm, and minimal dissipation factor (tan ${\delta}$) of ~0.025 at $10^6$ Hz. These values are comparable to the previously reported values obtained using unconventional sintering techniques such as spark plasma sintering and rapid liquid phase sintering.

Mechanical Synthesis and Rapid Consolidation of Nanostructured W-Al2O3 Composite

  • Lee, BooRak;Jeong, GeolChae;Park, GeunO;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.343-348
    • /
    • 2018
  • Recently, the properties of nanostructured materials as advanced engineering materials have received great attention. These properties include fracture toughness and a high degree of hardness. To hinder grain growth during sintering, it is necessary to fabricate nanostructured materials. In this respect, a high-frequency induction-heated sintering method has been presented as an effective technique for making nanostructured materials at a lower temperature in a very short heating period. Nanopowders of W and $Al_2O_3$ are synthesized from $WO_3$ and Al powders during high-energy ball milling. Highly dense nanostructured $W-Al_2O_3$ composites are made within three minutes by high-frequency induction-heated sintering method and materials are evaluated in terms of hardness, fracture toughness, and microstructure. The hardness and fracture toughness of the composite are $1364kg/mm^2$ and $7.1MPa{\cdot}m^{1/2}$, respectively. Fracture toughness of nanostructured $W-Al_2O_3$ is higher than that of monolithic $Al_2O_3$. The hardness of this composite is higher than that of monolithic W.

Humidity Properties of Sintered MnWO4 with a Low Temperature Firing Frit (저온소성 프릿이 첨가된 MnWO4의 소결체의 습도특성)

  • Jung, Byung-hae;So, Ji-young;Kim, Hyung-sun
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.120-125
    • /
    • 2003
  • A low melting borosilicate glass frit was used as an adhesion promoter, which enables $MnWO_4$to be sintered with in a reasonable sintering temperature range ($800∼1000^{\circ}C$). The glass was evaluated for glass transition temperature ($Τ_{g}$ X) and thermal expansion coefficient($\alpha$). Mechanical property (Vickers hardness), grain growth, the comparison of lattice parameter and pore distribution of sintered $MnWO_4$ with the frit were methodically discussed. As sintering temperature increased, a typical liquid phase sintering showed the rapid grain growth and high densification of X$MnWO_4$grain, improvement of hardness (until $920^{\circ}C$) and different pore size distribution. Resistance of sintered $MnWO_4$varied from 450k$\Omega$ to 8.8M$\Omega$ under the measuring humidify ranging from 30 to 90%. Thus, the results will contribute to the application of glass frit containing sensor materials and their future use.

Influence of Sintering Temperature on Magnetic Properties of Ni-Zn-Cu Ferrites Used for Mangetic Shielding in NFC (NFC의 자기차폐용 Ni-Zn-Cu 페라이트의 자기특성에 미치는 소결온도의 영향)

  • Ryu, Yo-Han;Kim, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.132-135
    • /
    • 2016
  • This study investigates the influence of sintering temperature on the magnetic properties and frequency dispersion of the complex permeability of Ni-Zn-Cu ferrites used for magnetic shielding in near-field communication (NFC) systems. Sintered specimens of $(Ni_{0.7}Zn_{0.3})_{0.96}Cu_{0.04}Fe_2O_4$ are prepared by conventional ceramic processing. The complex permeability is measured by an RF impedance analyzer in the range of 1 MHz to 1.8 GHz. The real and imaginary parts of the complex permeability depend sensitively on the sintering temperature, which is closely related to the microstructure, including grain size and pore distribution. In particular, internal pores within grains produced by rapid grain growth decrease the permeability and increase the magnetic loss at the operating frequency of NFC (13.56 MHz). At the optimized sintering temperature ($1225-1250^{\circ}C$), the highest permeability and lowest magnetic loss can be obtained.

Optimization of selective laser sintering process parameter for Fe-Ni-Cr coating fabrication (Fe-Ni-Cr 코팅층 형성을 위한 SLS 공정변수의 최적화)

  • Joo, B.D.;Jang, J.H.;Yim, H.S.;Son, Y.M.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.278-281
    • /
    • 2009
  • Selective laser sintering(SLS), a kind of rapid prototyping technology, can provide a process to form many types of coatings. Coated layers by selective laser melting are highly influenced by substrate, powder and laser parameters such as laser power, scan rate, fill spacing and layer thickness. Therefore an attempt to fabricate Fe-Ni-Cr coating on AISI H13 tool steel has been performed by selective laser sintering. In this study, Fe-Ni-Cr coating was produced by experimental facilities consisting of a 200W fiber laser which can be focused to 0.08mm and atmospheric chamber which can control atmospheric pressure with Ar. With power increase or energy density decrease, line width was decreased and line surface quality was improved with energy density increase. Surface quality of coating layer was improved with fill spacing optimization or layer thickness decrease.

  • PDF

Characteristic Evaluation of WC Hard Materials According to Ni Content Variation by a Pulsed Current Activated Sintering Process (펄스전류활성 소결 공정을 이용한 Ni 함량변화에 따른 WC 소재의 특성평가)

  • Park, Hyun-Kuk
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.672-677
    • /
    • 2020
  • Expensive PCBN or ceramic cutting tools are used for the processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have a problem of breaking easily due to their high hardness but low fracture toughness. To solve this problem, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and researches on various tool materials are being conducted. In this study, WC-5, 10, and 15 wt%Ni hard materials for difficult-to-cut cutting materials are densified using horizontal ball milled WC-Ni powders and pulsed current activated sintering method (PCAS method). Each PCASed WC-Ni hard materials are almost completely dense, with a relative density of up to 99.7 ~ 99.9 %, after the simultaneous application of pressure of 60 MPa and electric current for 2 min; process involves almost no change in the grain size. The average grain sizes of WC and Ni for WC-5, 10, and 15 wt%Ni hard materials are about 1.09 ~ 1.29 and 0.31 ~ 0.51 µm, respectively. Vickers hardness and fracture toughness of WC-5, 10, and 15 wt%Ni hard materials are about 1,923 ~ 1,788 kg/mm2 and 13.2 ~ 14.3 MPa.m1/2, respectively. Microstructure and phase analyses of PCASed WC-Ni hard materials are performed.