시공간 데이타베이스는 최근에 많은 주목을 받았지만, 영역 합 질의에 대한 연구는 그 중요성에 비하여 많이 부족하다. 영역 합 질의를 처리하기 위하여, 많은 양의 데이타에 대한 직접적인 접근은 엄청난 계산 비용을 야기하기 때문에, 최근에 기존 색인 기법을 활용한 materialization 방법이 제안되었다. 간단하면서 효과적인 방법은 시공간 조건을 가지는 윈도우 질의를 효율적인 처리하는 MVR-tree에 materialization 방법을 적용하는 것이다. 그러나, MVR-tree는 노드들 사이의 존재하는 원형 경로 때문에, 중간 노드에 미리 계산된 합을 유지하는 것이 불가능하다. 다른 색인 구조들에 기초한 집합적 구조(aggregate structures)는 만족스러운 질의 성능을 제공하지 못 한다. 본 논문에서는 적응적 분할 기법을 사용하는 새로운 색인 기법(Adaptive Partitioned Aggregate R-Tree, APART)과 다양한 환경에서 영역합 질의를 효율적으로 처리하는 질의 처리 알고리즘을 제안한다. 실험 결과는 APART의 성능이 다양한 상황에서 기존의 집합적 색인 기법들보다 2배 이상 우월하다는 것을 보여준다.
온라인 분석처리(On-Line Analytical Processing: OLAP)에서 집계 연산은 중요한 기본 연산이다. 본 논문에서는 OLAP에서의 집계 질의 중 영역-그룹화(range-groupby)라는 새로운 클래스의 질의를 정의하고, 이 질의의 처리 방법을 제시한다. 영역-그룹화 질의는 n-차원 데이타 큐브의 임의의 영역에 속한 셀들에 대하여 주어진 그룹화 속성들의 조합에 따라 집계 값을 구하는 질의이다. 이 질의는 관심의 대상이 되는 임의의 영역 내에서의 경향을 다각적인 측면에서 분석하기 위해서 OLAP에서 자주 사용되는 질의이다. 일반적으로, OLAP에서는 질의를 빠르게 처리하기 위하여 전방-합 배열(prefix-sum array)이라 불리는 집계 결과를 미리 계산하여 유지하는 선계산 기법이 실제적으로 널리 사용되고 있다. 그런데, 영역-그룹화 질의의 경우에는, 그룹화 속성들의 모든 조합에 대하여 집계 결과를 저장해야 하기 때문에, 저장 공간 오버헤드가 너무 크다. 본 논문에서는 가능한 적은 공간 오버헤드를 가지고 영역-그룹화 질의를 빠르게 처리할 수 있는 방법을 제안한다. 제안한 방법은 단지 하나의 전방-합 배열만을 유지하면서도, 가능한 모든 그룹화 속성의 조합에 대하여 영역-그룹화 질의를 효율적으로 처리한다. 이 방법은 가능한 모든 그룹화 속성들의 조합에 대하여, 전방-합 배열을 선계산하여 유지하는 방법과 비교할 때 액세스되는 셀의 개수는 비슷하면 서 공간 오버헤드는 (equation omitted)(n은 디멘젼의 개수)로 줄인다.
OLAP 분야에서 지금까지 연구되어온 영역 질의는 주어진 영역에 대한 집단 연산의 결과를 구하는 단순한 형태이다. 그러나 실제 데이타 분석 과정에서는 이러한 단순한 형태의 영역 질의뿐만 아니라, 집단 연산이 포함된 특정 조건을 만족하는 데이타 큐브 내의 영역을 찾는 형태의 확장된 영역 질의에 대한 필요성이 존재한다. 본 논문에서는 이러한 확장된 영역 질의 유형의 일반적인 형태를 정의하고, 이에 대한 대표적인 예인 'MAX-of-SUM 질의'의 효율적인 처리 기법을 제안한다. MAX-of-SUM 질의는 데이타 큐브 상에서 영역합(SUM)이 최대(MAX)가 되는 영역을 찾는 질의를 의미한다. 본 논문에서는 MAX-of-SUM 질의 처리 시 검색의 대상이 되는 영역들에 대한 SUM 연산의 결과값이 취할 수 있는 범위를 미리 예측하는 기법을 제안한다. 즉, 영역에 대한 SUM 값의 범위를 예측함으로써, 이들 중에서 최대값을 찾기 위해 실제로 계산하여야 하는 영역의 개수를 줄여 빠른 질의 처리를 보장한다.
데이터 웨어하우스에서 사용자는 전형적으로 상호작용적으로 질의를 부여함으로서 추세와 패턴 또는 예외적인 데이터의 행위를 검색한다. OLAP 영역-합 질의는 데이터 웨어하우스에서 추세를 발견하거나 또는 애트리뷰트들간의 관계를 발견하는데 폭 넓게 사용되고 있다. 최근의 기업환경은 데이터 큐브의 데이터 요소들이 자주 바뀌게 된다. 문제는 프리픽스 섬 큐브를 업데이트하는 비용이 매우 크다는 것이다. 이 논문에서는Δ-트리로 불리는 인덱싱 구조를 사용하여 업데이트 비용을 상당히 줄이는 참신한 알고리즘을 제안한다. 또한, 근사 또는 정확한 해를 제공하므로 질의의 전체비용을 줄일 수 있는 하이브리드 방법을 제안한다. 이는 의사 결정 지원 시스템과 같이 시간을 많이 소비하는 정확한 해보다는 빠른 근사 해를 필요로 하는 다양한 응용들에 큰 장점이 있다. 폭 넓은 실험은 우리의 방법이 다른 방법들과 비교하여 다양한 차원에서 매우 효율적으로 수행됨을 보여준다.
영역 질의는 의사결정에서 자주 사용되는 중요한 질의이다. 그러나, 영역 질의를 처리하기 위해서는 많은 점(cell)들이 검색되어야 하기 때문에 효율적인 처리가 쉽지 않았다. 이러한 문제를 해결하기 위해서 영역의 크기에 관계없이 일정한 시간에 영역 질의를 처리할 수 있는 전위-합 큐브(prefix-sum cube)가 제안되었다. 그러나, 전위-합 큐브는 영역 질의의 처리는 효율적으로 할 수 있지만, 그것을 저장하기 위해 매우 큰 저장 공간이 필요하다는 문제를 갖고 있다. 본 논문에서는 전위-합 큐브의 이 문제를 해결하기 위해서 손실 없이 전위-합 큐브를 압축하는 중첩된-서브큐브 압축 방법을 제안한다. 중첩된-서브큐브 압축 방법은 전위-합 큐브의 압축을 위해서 만들어진 것으로 압축된 상태에서 저장된 값을 검색할 수 있는 매우 유용한 특징이 있다. 이 특징으로 인해, 질의 처리 시 압축된 전위-합 큐브를 그대로 사용할 수 있다. 압축된 전위-합 큐브를 사용하면, 동일한 크기의 버퍼에 전위-합 큐브의 더 많은 부분을 저장할 수 있다. 이것은 질의 처리 시 디스크 입출력의 횟수를 획기적으로 감소시킨다.
히스토그램은 질의 최적화글 위해 사용되는 튿-계 정또 중 하나이다. 최근에는 방대한 데이타에 대한 범위 질의의 선택도 추정 방법의 하나로 사용되기도 한다. 히스토그램을 통한 범위 질의의 선택도 추정 결과는 항상 오차를 포함한다. 따라서 결과의 신뢰성을 보장하기 위해 선택도에 대한 오차를 추정하는 방법이 요구된다. 추정된 선택도의 오차 추정에 대한 기존 방법은 1차원 히스토그램만을 고려하여 하나의 애트리뷰트의 값에 따라 빈도의 분포를 반영하므로 애트리뷰트가 많은 다차원 히스토그램에 바로 적용시키는데 문제가 있다. 이 논문에서는 기존의 추정된 선택도에 대한 오차 추정 기법들을 다차원에 적용할 수 있게 확장한 M-Max, M-Sum 기법을 제안하고, 두 기법을 합친 하이브리드 기법을 제안한다. 실험을 통해 M-Sum 기법과 하이브리드 기법이 M-Max 기법보다 정확한 오차 추정 기법임을 보이고, 또한 작은 기억 공간에서도 두 기법이 오차를 보다 정확하게 추정함을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.