• Title/Summary/Keyword: range estimation

Search Result 2,013, Processing Time 0.032 seconds

Calculation of Human Resources for Medical Technologist in Diagnostic Testing (진단검사분야의 임상병리사 인력산정에 관한 연구)

  • Yang, Byoung Seon;Lim, Yong;Kim, Yoon Sik;Oh, Yeon Suk;Bae, Do Hee;Choi, Se Mook
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.2
    • /
    • pp.158-163
    • /
    • 2020
  • This study examines and presents reasonable improvement measures for the operation and revision of the relative value scoring system, and the basis for performance of a medical technologist. Seven hospitals were enrolled in the study, and included 5 resident laboratory medicine specialists and 53 medical technologists, giving a ratio of 10.6 technologists per laboratory medicine specialist. The average of professional manpower scores was 18, and the average of each medical institution's total score was 78. Ratings and additional rates were in the range 2~3%, and quality-added ratios were 2~3%, with no significance. Excluding pathological testing and assessing physiological functions, the average number of diagnostic tests for health insurance claims were 9,618,062, including 4,378,146 points for 5% of the total relative value scores. According to the DEA, the appropriate number of medical technologist is one person per 49,974 points of relative value. In conclusion, our study results indicate that it would be desirable to set the appropriate workforce for medical technologist to one person per 50,000 points of relative value. Our data could be used as a basis for enhancing productivity of the workforce and balancing health care resources.

A numerical study of the effects of the ventilation velocity on the thermal characteristics in underground utility tunnel (지하공동구 터널내 풍속 변화에 따른 열특성에 관한 수치 해석적 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Ra, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.29-39
    • /
    • 2017
  • In this research, thermal design data such as heat transfer coefficient on the wall surface required for ventilation system design which is to prevent the temperature rise in the underground utility tunnel that three sides are adjoined with the ground was investigated in numerical analalysis. The numerical model has been devised including the tunnel lining of the underground utility tunnel in order to take account for the heat transfer in the tunnel walls. The air temperature in the tunnel, wall temperature, and the heating value through the wall based on heating value(117~468 kW/km) of the power cable installed in the tunnel and the wind speed in the tunnel(0.5~4.0 m/s) were calculated by CFD simulation. In addition, the wall heat transfer coefficient was computed from the results analysis, and the limit distance used to keep the air temperature in the tunnel stable was examined through the research. The convective heat transfer coefficient at the wall surface shows unstable pattern at the inlet area. However, it converges to a constant value beyond approximately 100 meter. The tunnel wall heat transfer coefficient is $3.1{\sim}9.16W/m^2^{\circ}C$ depending on the wind speed, and following is the dimensionless number:$Nu=1.081Re^{0.4927}({\mu}/{\mu}_w)^{0.14}$. This study has suggested the prediction model of temperature in the tunnel based on the thermal resistance analysis technique, and it is appraised that deviation can be used in the range of 3% estimation.

Study on Queue Length Estimation using GPS Trajectory Data (GPS 데이터를 이용한 대기행렬길이 산출에 관한 연구)

  • Lee, Yong-Ju;Hwang, Jae-Seong;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.45-51
    • /
    • 2016
  • Existing real-time signal control system was brought up typical problems which are supersaturated condition, point detection system and loop detection system. For that reason, the next generation signal control system of advanced form is required. Following thesis aimed at calculating queue length for the next generation signal control system to utilize basic parameter of signal control in crossing queue instead of the volume of real-time through traffic. Overflow saturated condition which was appeared as limit of existing system was focused to set-up range. Real-time location information of individual vehicle which is collected by GPS data. It converted into the coordinate to apply shock wave model with an linear equation that is extracted by regression model applied by a least square. Through the calculated queue length and link length by contrast, If queue length exceed the link, queue of downstream intersection is included as queue length that upstream queue vehicle is judeged as affecting downstream intersection. In result of operating correlation analysis among link travel time to judge confidence of extracted queue length, Both of links were shown over 0.9 values. It is appeared that both of links are highly correlated. Following research is significant using real-time data to calculate queue length and contributing to signal control system.

Estimation of Volume Change and Fluid-Rock Ratio of Gouges in Quaternary Faults, the Eastern Blocks of the Ulsan Fault, Korea (울산단층 동부지역 제4기단층 비지대의 체적변화와 유체-암석비에 대한 고찰)

  • Chang Tae-Woo;Chae Yeon-Zoon;Choo Chang-Oh
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.349-363
    • /
    • 2005
  • Many Quaternary faults are recognized as thin gouge and narrow cataclastic zone juxtaposing the Bulguksa granite and Quaternary deposit bed in the eastern block of the Using Fault, Korea: Gaegok 1, Caegok 2, Singye, Madong Wonwonsa and Jinhyeon faults. This study was performed to calculate chemical change, volume change, silica loss and fluid-rock ratio taken place in gouge zones of these Quaternary faults using XRF, XRD, EPMA. The chemical compositions of fault rocks reveal that the fault gouges are depleted in $SiO_2,\;Na_2\;O,and\;K_2O$ and enriched in $Al_2O_3,\;Fe_2O_3,\;P_2O_5,\;MgO,\;MnO,\;CaO,\;and\;LOI(H_2O+CO_2)$ relative to protoliths. The fact that there is enrichment of relatively immobile elements and depletion of the more soluble elements in the fault gouges relative to protoliths can be explained by fluid-assisted volume loss of $56\%$ for Caegok 1 fault, $22\%$ for Caegok 2 fault,$34\%$, for Singye fault, $8\%$ for Madong fault, $2\%$ for the Wonwonsa fault and $53\%$ for the linhyeon fault. Madong fault and Wonwonsa fault where ratios of the volume change, silica loss and fluid-rock are low might have acted as a closed system for fluid activity, whereas Caegok 1 fault and Jinhyeon fault with high ratios in those factors be an open system. The volumetric fluid-rock ratios range $10^2\sim10^4$ for all faults, being highest in Caegok 1 fault and Jinhyeon fault whose fluid activity was most significant.

A Frequency Domain DV-to-MPEG-2 Transcoding (DV에서 MPEG-2로의 주파수 영역 변환 부호화)

  • Kim, Do-Nyeon;Yun, Beom-Sik;Choe, Yun-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.2
    • /
    • pp.138-148
    • /
    • 2001
  • Digital Video (DV) coding standards for digital video cassette recorder are based mainly on DCT and variable length coding. DV has low hardware complexity but high compressed bit rate of about 26 Mb/s. Thus, it is necessary to encode video with low complex video coding at the studios and then transcode compressed video into MPEG-2 for video-on-demand system. Because these coding methods exploit DCT, transcoding in the DCT domain can reduce computational complexity by excluding duplicated procedures. In transcoding DV into MPEC-2 intra coding, multiplying matrix by transformed data is used for 4:1:1-to-4:2:2 chroma format conversion and the conversion from 2-4-8 to 8-8 DCT mode, and therefore enables parallel processing. Variance of sub block for MPEG-2 rate control is computed completely in the DCT domain. These are verified through experiments. We estimate motion hierarchically using DCT coefficients for transcoding into MPEG-2 inter coding. First, we estimate motion of a macro block (MB) only with 4 DC values of 4 sub blocks and then estimate motion with 16-point MB using IDCT of 2$\times$2 low frequencies in each sub block, and finish estimation at a sub pixel as the fifth step. ME with overlapped search range shows better PSNR performance than ME without overlapping.

  • PDF

A STUDY ON THE ERRORS UN THE CEPHALOMETRIC MEASUREMENTS (두부방사선사진의 계측오류에 관한 연구)

  • Na, Kwang-Cheon;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.75-83
    • /
    • 1998
  • This study was done to recognize the importance of errors in measurements of cephalometric radiograph and to find the anatomical structures those need special care to select as a reference points through the detection of the systematic errors and estimation of random errors. For this purose, 100 cephalometric radiographs were prepared by usual manner and 61 reference points, and 130 measurement variables were established. Measurement errors were detected and estimated by the comparison of the 25 randomly-selected samples for repeated measurements with the main sample. The following results were obtained : 1. In comparison of the repeated measurements, there were statistical significant differences in 24 variables which were 18.4% of 130 total variables. 2. The frequency of the difference in identification of the reference points between the repeated measurements was very high in the root apex of upper incisor(as), the most posterior wall of maxilla(tu), soft tissue nasion(n'), soft tissue frontal eminence(ft), and ad3 in airway. 3. After correction of reference points marking until the level of below 5% significance, the range of random errors were from 0.67 to 1.71 degree or mm. 4. The variable shown the largest random error was the interincisal angle(ILs-ILi). 5. Measurement errors were mainly caused by the lack of precision in anatomic definitions and obscure radiographic image. From the above results, the author could find the high possibility of errors in cephalometric measurements and from this point, we should include error analysis in all the studies concerning measurments. In is essential to have a concept of error analysis not only for the investigator but also for a reader of other articles.

  • PDF

Correlation between Mix Proportion and Mechanical Characteristics of Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트의 배합비와 역학적 특성 사이의 관계 추정)

  • Choi, Hyun-Ki;Bae, Baek-Il;Koo, Hae-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.331-341
    • /
    • 2015
  • The main purpose of this study is reducing the cost and effort for characterization of tensile strength of fiber reinforced concrete, in order to use in structural design. For this purpose, in this study, test for fiber reinforced concrete was carried out. Because fiber reinforced concrete is consisted of diverse material, it is hard to define the correlation between mix proportions and strength. Therefore, compressive strength test and tensile strength test were carried out for the range of smaller than 100 MPa of compressive strength and 0.25~1% of steel fiber volume fraction. as a results of test, two types of tensile strength were highly affected by compressive strength of concrete. However, increase rate of tensile strength was decreased with increase of compressive strength. Increase rate of tensile strength was decreased with increase of fiber volume fraction. Database was constructed using previous research data. Because estimation equations for tensile strength of fiber reinforced concrete should be multiple variable function, linear regression is hard to apply. Therefore, in this study, we decided to use the ANN(Artificial Neural Network). ANN was constructed using multiple layer perceptron architecture. Sigmoid function was used as transfer function and back propagation training method was used. As a results of prediction using artificial neural network, predicted values of test data and previous research which was randomly selected were well agreed with each other. And the main effective parameters are water-cement ratio and fiber volume fraction.

Effects of Heavy Metal and Salinity on Electrical Conductivity in Fully Saturated Sand (포화된 사질토의 전기전도도에 중금속과 염분 농도가 미치는 영향)

  • Lee, Dongsoo;Hong, Young-Ho;Hong, Won-Teak;Chae, Kwang-Seok;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.10
    • /
    • pp.23-34
    • /
    • 2017
  • As the electrical property of fully saturated soils is dependent on the pore water, it has been commonly used for the detection of the contamination into the ground. The objective of this study is to investigate the electrical characteristics according to the salinity and the lead concentration in fully saturated soils. Fresh water and saline water with the salinity of 1%, 2% and 3%, which are mixed with 6 different lead solutions with the range of 0~10 mg/L, are prepared in the cylindrical cell incorporated with sensors for measuring electrical resistance and time domain reflectometry signal. Then, the dried sands are water-pluviated into the cell. The electrical resistance and the time domain reflectometry signal are used to estimate the electrical conductivity. Test results show that electrical conductivity determined from electrical resistance at the frequency of 1 kHz continuously increases with an increase in the lead concentration, thus it may be used for the estimation of the contaminant level. In addition, the electrical conductivity estimated by the time domain reflectometry changes even at very low concentration of lead, the variation rate decreases as the lead concentration increases. Thus, the time domain reflectometry can be used for the investigation of the heavy metal leakage. This study demonstrates that complementary characteristics of electrical resistance and time domain reflectometry may be used for the detection of the leakage and contamination of heavy metal in coastal and marine environments.

Three-Dimensional Limit Equilibrium Stability Analysis of the Irregularly Shaped Excavation Comer with Skew Soil Nailing System

  • Kim, Hong Taek;Par
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.73-94
    • /
    • 1998
  • In the present study, a method of the three-dimensional limit equilibrium stability analysis of shape of the potential failure wedge for the concave-shaped excavation corner is assumed on the basis of the results of the FLACSU program analysis. Estimation of the three-dimensional seepage forces expected to act on the failure wedge is made by solving the three-dimensional continuity equation of flow with appropriate boundary conditions. By using the proposed method of three-dimensional stability analysis of the concave-shaped excavation corner, a parametric study is performed to examine the reinforcement effect of skew soil nailing system, range of the efficient skew angles and seepage effect on the overall stability. Also examined is the effect of an existence of the right-angled excavation corner on three-dimensional deflection behaviors of the convex-shaped skew soil nailing walls. The results of analyses of the convexshaped excavation corner with skew soil nailing system is further included to illustrate the effects of various design parameters for typical patterns of skew nails reinforcement system.

  • PDF

Discussion for Improvement of Decision System of Total Risk in Off-site Risk Assessment (화학사고 장외영향평가 제도의 종합위험도 결정 체계 개선을 위한 고찰)

  • Choi, Woosoo;Ryu, Taekwon;Kwak, Sollim;Lim, Hyeongjun;Jung, Jinhee;Lee, Jieun;Kim, Jungkon;Baek, Jongbae;Yoon, Junheon;Ryu, Jisung
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.3
    • /
    • pp.217-226
    • /
    • 2018
  • Objectives: Despite the positive effects of Off-site risk assessment (ORA) system such as prevention of chemical accidents, some problems have been constantly raised. The purpose of this study is to analyze the problems that have occurred through the implementation of the ORA system for the past three years and to suggest reasonable directions for improvement in the future. Methods: In order to identify the problems with the methodology and procedure of ORA system, we analyzed statutes, administrative rules and documents related to the ORA system. A survey of ORA reviewers in National Institute of Chemical Safety was conducted to investigate the weight of determinants considered when judging the level of total risk in ORA. Results: In this study, we found out the uncertainty of the estimation of the number of people in the impact range in the procedure of the risk assessment of individual handling facilities, the lack of quantitative risk analysis methods for environmental receptors, and the ambiguity of the criteria for the total risk. In addition to suggesting solutions to the problems mentioned above, we also, suggested a decision tree for total risk in ORA. Conclusion: We anticipate that the solutions including the systematic decision tree for total risk suggested will contribute to the smooth operation of the ORA system.