• Title/Summary/Keyword: randomly distributed fiber

Search Result 50, Processing Time 0.027 seconds

Compensation for the Distorted WDM Channels in the Long-Haul Transmission Link with the Randomly Distributed SMF Lengths and RDPS (SMF 길이와 RDPS가 랜덤하게 분포하는 장거리 전송 링크에서의 왜곡된 WDM 채널의 보상)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.323-329
    • /
    • 2015
  • The compensation characteristics of the distorted WDM channels compensated for by dispersion management (DM) and optical phase conjugation in the long-haul ($50\;fiber\;spans{\times}80km$) transmission link with the randomly distributed single mode fiber (SMF) length and residual dispersion per spans (RDPS) for implementing of the flexible link configuration are investigated. It is confirmed that the compensation effect in the link with the randomly distributed SMF length and RDPS is similar with that in the link with the uniform distribution, when the launch power of WDM channels are restricted within 0 dBm. This result means that the proposed link configuration is useful for designing and deploying the long-haul WDM transmission link.

Shear Strength and Permeability Characteristics of Soil Body Reinforced with Linear and Planar Reinforcing Materials (선형보강재와 평면보강재를 적용한 토체의 전단강도 및 투수특성)

  • 차경섭;장병욱;우철웅;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.162-171
    • /
    • 2003
  • Traditional methods of earth reinforcement consist of introducing strips, fabrics, or grids into an earth mass. Recently, discrete fibers are simply added and mixed with the soil, much the same as cement, lime or other additives. The advantages of randomly distributed fibers is the maintenance of strength isotropy, low decrease in post-peak shear strength and high stability at failure. In this study, new composite reinforcement structures which consist of geotextile and randomly distributed discrete fibers were examined their engineering properties, such as shear strength of the composite reinforced soil and permeability of short fiber reinforced soil. The increments of shear strength of composite reinforced soils were the sum of increments by fiber and woven geotextile, respectively. The permeability of short fiber reinforced soil was increased with fiber mixing ratio.

Dispersion-managed Link Consisted of the Randomly-distributed Optical Fibers Combined with Midway Optical Phase Conjugator (Midway OPC를 갖는 광섬유의 길이가 랜덤하게 분포하는 분산 제어 링크)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.630-632
    • /
    • 2018
  • The compensation characteristics of the distorted WDM channels compensated for by dispersion management (DM) and optical phase conjugation in the long-haul (50 fiber spans ${\times}$ 80 km) transmission link with the randomly distributed single mode fiber (SMF) length and residual dispersion per spans (RDPS) for implementing of the flexible link configuration are investigated.

  • PDF

Prediction of ECC tensile stress-strain curves based on modified fiber bridging relations considering fiber distribution characteristics

  • Lee, Bang Yeon;Kim, Jin-Keun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.455-468
    • /
    • 2010
  • This paper presents a prediction and simulation method of tensile stress-strain curves of Engineered Cementitious Composites (ECC). For this purpose, the bridging stress and crack opening relations were obtained by the fiber bridging constitutive law which is quantitatively able to consider the fiber distribution characteristics. And then, a multi-linear model is employed for a simplification of the bridging stress and crack opening relation. In addition, to account the variability of material properties, randomly distributed properties drawn from a normal distribution with 95% confidence are assigned to each element which is determined on the basis of crack spacing. To consider the variation of crack spacing, randomly distributed crack spacing is drawn from the probability density function of fiber inclined angle calculated based on sectional image analysis. An equation for calculation of the crack spacing that takes into quantitative consideration the dimensions and fiber distribution was also derived. Subsequently, a series of simulations of ECC tensile stress-strain curves was performed. The simulation results exhibit obvious strain hardening behavior associated with multiple cracking, which correspond well with test results.

Compensation of the Distorted WDM Channels Depending on the Control Position of Net Residual Dispersion in Dispersion-managed Optical Link with the Randomly Distributed SMF Lengths and RDPS (SMF 길이와 RDPS가 랜덤하게 분포하는 분산 제어 광전송 링크에서 전체 잉여 분산 조절 위치에 따른 왜곡된 WDM 채널의 보상)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.187-192
    • /
    • 2017
  • The compensation characteristics of the distorted WDM channels compensated for by dispersion management (DM) and optical phase conjugation in the long-haul (50 fiber spans ${\times}80km$) transmission link with the randomly distributed single mode fiber (SMF) length and residual dispersion per spans (RDPS) are investigated as a function of the arrangement of SMF and dispersion compensating fiber (DCF) and the control position of net residual dispersion (NRD). It is confirmed that the compensation effect of the distorted WDM channels strongly depends on the arragement of SMF and DCF, rather than the control position of NRD.

Shrinkage Properties of High Early Strength Fiber Reinforced Concrete (초기강도 섬유보강 콘크리트의 수축특성)

  • 원종필;김현호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.124-131
    • /
    • 2001
  • The shrinkage properties of high early strength concrete were investigated. One of the method to control microcrack and crack development due to restrained shrinkage is to reinforce concrete with randomly distributed fibers. Regulated-set cement and two different types of fiber were adopted. The experiments for heat of hydration, drying and autogenous shrinkage were conducted. The desirable resistance of high early strength fiber reinforced concrete to restrained shrinkage microcracking was achieved. These results indicate that use of fiber in high early strength concrete plays an important role in control of crack development due to restrained shrinkage.

  • PDF

Interfacial Strain Distribution of a Unidirectional Composite with Randomly Distributed Fibers (불규칙 섬유배열을 가진 일방향 복합재료의 경계면 변형률 분포 해석)

  • Ha Sung-Kyu;Jin Kyo-Kook;Oh Je-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.260-268
    • /
    • 2006
  • The micromechanical approach was used to investigate the interfacial strain distributions of a unidirectional composite under transverse loading in which fibers were usually found to be randomly packed. Representative volume elements (RVE) for the analysis were composed of both regular fiber arrays such as a square array and a hexagonal array, and a random fiber array. The finite element analysis was performed to analyze the normal, tangential and shear strains at the interface. Due to the periodic characteristics of the strain distributions at the interface, the Fourier series approximation with proper coefficients was utilized to evaluate the strain distributions at the interface for the regular and random fiber arrays with respect to fiber volume fractions. From the analysis, it was found that the random arrangement of fibers had a significant influence on the strain distribution at the interface, and the strain distribution in the regular fiber arrays was one of special cases of that in the random fiber array.

Dispersion-managed Optical Transmission Links with the Random Distributed SMF Lengths (SMF 길이가 랜덤하게 분포하는 분산 제어 광전송 링크)

  • Lee, Young-Kyo
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.462-466
    • /
    • 2018
  • Optical phase conjugation combining with dispersion management (DM) is promising technique to compensate for signal distortion due to chromatic dispersion and nonlinear Kerr effects of single mode fiber (SMF) in optical communication systems. However the fixed SMF length in every fiber spans usually used in the optical links with optical phase conjugator(OPC) and DM restricts the flexible link configuration. The goal of this paper is to investigate the possibility of the flexible configurations of the ultra-high and long-haul optical transmission systems by using the random distribution of SMF length of each fiber spans consisted of the optical link. It is confirmed that the excellent compensation for the distorted wavelength division multiplexing signals in the optical links with the randomly distribution is obtained in case of the shorter averaged SMF length over all fiber spans. It is also confirmed that the control method of net residual dispersion suitable to good compensation is postcompensation and the extent of net residual dispersion(NRD) is -10 ps/nm in DM optical link consisted of fiber spans with the randomly distributed SMF lengths.

Dispersion Management and Optical Phase Conjugation in Optical Transmission Links with a Randomly Distributed Single-Mode Fiber Length

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Suppressing or mitigating signal distortion due to group velocity dispersion and optical Kerr effects is necessary in ultra-high speed and long-haul wavelength division multiplexing (WDM) transmission systems. Dispersion management (DM), optical phase conjugation (OPC), and the combination of these two are promising techniques to compensate for signal distortion. In this paper, to implement a flexible optical WDM network, a new optical link configuration with a randomly distributed single-mode fiber (SMF) length and fixed residual dispersion per span in the combination of DM and OPC is proposed and investigated. The simulation results show that the best net residual dispersion (NRD) in the proposed optical links is +10 ps/nm, which is independent of pre- and postcompensation. The effective launch power of the WDM channel is increased more in the optical links with NRD = +10 ps/nm controlled by only precompensation. Furthermore, the system performance difference between the proposed optical link configuration with the best NRD and the conventional optical link with uniform distribution of the SMF length had little significance. Consequently, it is confirmed that the proposed optical link configuration with the best NRD is effective and useful for implementing a reconfigurable long-haul WDM network.