• Title/Summary/Keyword: random wave

Search Result 361, Processing Time 0.027 seconds

Probabilistic Risk Assessment of Coastal Structures using LHS-based Reliability Analysis Method (LHS기반 신뢰성해석 기법을 이용한 해안구조물의 확률론적 위험도평가)

  • Huh, Jung-Won;Jung, Hong-Woo;Ahn, Jin-Hee;An, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.72-79
    • /
    • 2015
  • An efficient and practical reliability evaluation method is proposed for the coastal structures in this paper. It is capable of evaluating reliability of real complicated coastal structures considering uncertainties in various sources of design parameters, such as wave and current loads, resistance-related design variables including Young's modulus and compressive strength of the reinforced concrete, soil parameters, and boundary conditions. It is developed by intelligently integrating the Latin Hypercube sampling (LHS), Monte Carlo simulation (MCS) and the finite element method (FEM). The LHS-based MCS is used to significantly reduce the computational effort by limiting the number of simulation cycles required for the reliability evaluation. The applicability and efficiency of the proposed method were verified using a caisson-type breakwater structure in the numerical example.

Implementation of 2.4 GHz Wireless Keyboard and Mouse Electromagnetic Signal Analysis and Manipulate Systems (2.4 GHz 무선 키보드/마우스 전자파 신호 분석 및 조작 시스템 구축)

  • Kim, Sang-Su;Oh, Seung-Sub;Na, In-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1075-1083
    • /
    • 2016
  • Nowadays, the use of wireless input devices has been increasing on the basis of high convenience and portability. In particular the most widely used wireless keyboard and the mouse to use the 2.4 GHz frequency band, but due to the third party receives the electromagnetic wave from leaking when the radio equipment it is easy to obtain the personal information and the vulnerability is also being reported consistently. In this paper, implement a system to analyze and manipulate the packets of 2.4 GHz wireless keyboard and mouse using USRP device and GNU Radio package for verify the vulnerability of 2.4 GHz wireless keyboard and mouse. Using the construction system has attained a equipment specific address and key information by analyzing the communication protocol and the packet structure of the device was proved that a user can operate the PC to send the random key from long distance.

A Novel Side-Peak Cancellation Method for BOC Signal Synchronization (BOC 신호 동기화를 위한 새로운 주변 첨두 제거 기법)

  • Kim, Sang-Hun;Yoon, Tae-Ung;Lee, Young-Yoon;Han, Tae-Hee;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.131-137
    • /
    • 2009
  • Binary offset carrier (BOC) signal synchronization is one of the most important steps to recover the transmitted information in global navigation satellite systems (GNSS) including Galileo and global positioning system (GPS). Generally, BOC signal synchronization is based on the correlation between the received and locally generated BOC signals. Thus, the multiple side-peaks in BOC autocorrelation are one of the main error sources in synchronizing BOC signals. Recently, a novel correlation function with reduced side-peaks was proposed for BOC signal synchronization by Julien [8]; however, Julien's correlation function not only still has the side-peaks, but also is only applicable to sine phased BOC(n, n), where n is the ratio of the pseudo random noise (PRN) code rate to 1.023 MHz. In this paper, we propose a new correlation function for BOC signal synchronization, which does not have any side-peaks and is applicable to general types of BOC signals, sine/cosine phased BOC(kn, n), where k is the ratio of a PRN chip duration to the period of a square wave sub-carrier used in BOC modulation. In addition, an efficient correlator structure is presented for generating the proposed correlation function.

Comparison of Fatigue Damage Models of Spread Mooring Line for Floating Type Offshore Plant (부유식 해양플랜트 다점 계류라인의 피로손상모델 비교)

  • Park, Jun-Bum;Kim, Kookhyun;Kim, Kyung-Su;Ko, Dae-Eun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.63-69
    • /
    • 2013
  • The mooring lines of a floating type offshore plant are known to show wide banded and bimodal responses. These phenomena come from a combination of low and high frequency random load components, which are derived from the drift-restoring motion characteristic and wind- sea, respectively. In this study, fatigue models were applied to predict the fatigue damage of mooring lines under those loads, and the result were compared. For this purpose, seven different fatigue damage prediction models were reviewed, including mathematical formula. A FPSO (floating, production, storage, and offloading) with a $4{\times}4$ spread catenary mooring system was selected as a numerical model, which was already installed at an offshore area of West Africa. Four load cases with different combinations of wave and wind spectra were considered, and the fatigue damage to each mooring line was estimated. The rain flow fatigue damage for the time process of the mooring tension response was compared with the results estimated by all the fatigue damage prediction models. The results showed that both Benasciutti-Tovo and JB models could most accurately predict wide banded bimodal fatigue damage to a mooring system.

Effect of low frequency motion on the performance of a dynamic manual tracking task

  • Burton, Melissa D.;Kwok, Kenny C.S.;Hitchcock, Peter A.
    • Wind and Structures
    • /
    • v.14 no.6
    • /
    • pp.517-536
    • /
    • 2011
  • The assessment of wind-induced motion plays an important role in the development and design of the majority of today's structures that push the limits of engineering knowledge. A vital part of the design is the prediction of wind-induced tall building motion and the assessment of its effects on occupant comfort. Little of the research that has led to the development of the various international standards for occupant comfort criteria have considered the effects of the low-frequency motion on task performance and interference with building occupants' daily activities. It has only recently become more widely recognized that it is no longer reasonable to assume that the level of motion that a tall building undergoes in a windstorm will fall below an occupants' level of perception and little is known about how this motion perception could also impact on task performance. Experimental research was conducted to evaluate the performance of individuals engaged in a manual tracking task while subjected to low level vibration in the frequency range of 0.125 Hz-0.50 Hz. The investigations were carried out under narrow-band random vibration with accelerations ranging from 2 milli-g to 30 milli-g (where 1 milli-g = 0.0098 $m/s^2$) and included a control condition. The frequencies and accelerations simulated are representative of the level of motion expected to occur in a tall building (heights in the range of 100 m -350 m) once every few months to once every few years. Performance of the test subjects with and without vibration was determined for 15 separate test conditions and evaluated in terms of time taken to complete a task and accuracy per trial. Overall, the performance under the vibration conditions did not vary significantly from that of the control condition, nor was there a statistically significant degradation or improvement trend in performance ability as a function of increasing frequency or acceleration.

The Effect of the Lumbar Segmental Mobilization Technique on Chronic Low Back Pain Patients' the Characteristics of the Muscles, and Limited of Stability (허리의 분절적 가동기법이 만성 허리통증 환자의 근육 특성과 안정성 한계에 미치는 영향)

  • Yang, Daejung;Uhm, Yohan
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.191-202
    • /
    • 2020
  • Purpose : The purpose of this study is to examine the effect of the segmental mobilization technique of the lower back on the characteristics of the muscles and limited of stability of chronic backache patients. Methods : The subjects of the study were 30 chronic back pain patients who were divided into groups of 15, a manual therapy group (Group I) and a spinal decompression therapy group (Group II), via random assignation. The subjects had 15 minutes of superficial heat therapy, 15 minutes of interference wave therapy, and 5 minutes of ultrasound therapy for conservative physical therapy. Additionally, manual therapy and spinal decompression therapy were administered to each group for 30 minutes, 5 times a week for 8 weeks. Before intervention, the characteristics of the muscles and limited of stability of the muscles were analyzed. After 8 weeks of intervention, the above items were re-measured in the same manner and analyzed between groups. Results : The results of comparative analysis of the characteristics of the muscles and limited of stability between groups showed that there were statistically significant differences. The manual therapy group (Group I) showed significant differences in characteristics of the muscles compared to the spinal decompression therapy group (Group II). The manual therapy group (Group I) showed significant differences in limited of stability compared to the spinal decompression therapy group (Group II). Conclusion : The result confirmed that manual therapy was more effective in the characteristics of the muscles and limited of stability. Based on this study, additional studies are necessary on the effect of various techniques of manual therapy on muscle activity and muscle thickness in chronic back pain patients. In order to develop an effective manual therapy program, studies using a variety of evaluations are needed.

Derivation of Coherent Reflection Coefficient at Mid and Low Frequency for a Rough Surface (불규칙 경계면에 대한 중저주파수 간섭 반사 계수 유도)

  • Chu, Young-Min;Seong, Woo-Jae;Byun, Sung-Hoon;Kim, Sea-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.174-186
    • /
    • 2009
  • When we apply a propagation model to the ocean with boundaries, we can calculate reflected wave using reflection coefficient suggested by Rayleigh assuming the boundaries are flat. But boundaries in ocean such as sea surface and sea bottom have an irregular rough surface. To calculate the reflection loss for an irregular boundary, it is needed to compute the coherent reflection coefficient based on an experimental formula or scattering theory. In this article, we derive the coherent reflection coefficients for a fluid-fluid interface using perturbation theory, Kirchhoff approximation and small-slope approximation respectively. Based on each formula, we can calculate coherent reflection coefficients for a rough sea surface or sea bottom, and then compare them to the Rayleigh reflection coefficient to analyze the reflection loss for a random rough surface. In general, the coherent reflection coefficient based on small-slope approximation has a wide valid region. Comparing it with the coherent reflection coefficients derived from the Kirchhoff approximation and perturbation theory, we discuss a valid region of them.

Ultrasonic Velocity Measurements of Engineering Plastic Cores by Pulse-echo-overlap Method Using Cross-correlation (다중 반사파 중첩 자료의 상호상관을 이용한 엔지니어링 플라스틱 코어의 초음파속도 측정)

  • Lee, Sang Kyu;Lee, Tae Jong;Kim, Hyoung Chan
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • An automated ultrasonic velocity measurement system adopting pulse-echo-overlap (PEO) method has been constructed, which is known to be a precise and versatile method. It has been applied to velocity measurements for 5 kinds of engineering plastic cores and compared to first arrival picking (FAP) method. Because it needs multiple reflected waves and waves travel at least 4 times longer than FAP, PEO has basic restriction on sample length measurable. Velocities measured by PEO showed slightly lower than that by FAP, which comes from damping and diffusive characteristics of the samples as the wave travels longer distance in PEO. PEO, however, can measure velocities automatically by cross-correlating the first echo to the second or third echo, so that it can exclude the operator-oriented errors. Once measurable, PEO shows essentially higher repeatability and reproducibility than FAP. PEO system can diminish random noises by stacking multiple measurements. If it changes the experimental conditions such as temperature, saturation and so forth, the automated PEO system in this study can be applied to monitoring the velocity changes with respect to the parameter changes.

Effects of Electroacupuncture on Parameters Related to Obesity in Adults with Abdominal Obesity:Three arm Randomized Single Blind Pilot Study (전침이 복부비만 성인의 비만관련 지표에 미치는 영향-무작위배정 단일 맹검 예비연구-)

  • Chung, Jie-Youn;Kim, Jong-In;Lee, Sang-Hoon;Kang, Sung-Keel
    • Journal of Acupuncture Research
    • /
    • v.27 no.6
    • /
    • pp.43-57
    • /
    • 2010
  • Objectives : To investigate the effects of electroacupuncture on parameters related to obesity in adults with abdominal obesity. Methods : A three arm randomized single blind pilot study was conducted from Jan 4 to March 25, 2010 in Kyung Hee Oriental Medical Hospital. The subjects were 39 adults with abdominal obesity and were randomly divided by computer generated random table into 3 groups; EA(electroacupuncture), sham EA(sham electroacupuncture) and waitlist groups. Acupuncture points located at abdomen($CV_{12}$, $CV_6$, $ST_{25}$, $SP_{15}$, $SP_{14}$) and extremities($LI_4$, $LI_{11}$, $ST_{36}$, $ST_{44}$) were inserted by disposable stainless steel needles and were stimulated 30 minutes with 24Hz, 0.27~1.3mA(tolerable strength), asymmetric biphasic continuous pulse wave form by STN-111 Stratek device in EA group. Two treatment sessions per week for 5 weeks(10 sessions in total) were done in EA and sham EA groups. The primary outcome measurement was WC(waist circumference), and the secondary outcome measurements included WHR(waist hip ratio), ASF(thickness of abdominal subcutaneous fat), and inbody measurements of BW(body weight), BMI(body mass index), BFR(body fat ratio) and VFA(visceral fat area), and also scores of BULIT-R(bulimia test revised), KoQoL(Korean obesity of QoL) and BSQ(body shape questionnaire). Results : All of 39 subjects were included in ITT(intention-to-treat) analysis. There were significant reductions in WC, WHR and ASF after 5-week electroacupuncture treatments and the percentage reductions were significantly greater than sham EA or waitlist group. There were no significant differences between groups in percentage reductions of other parameters(BW, BMI, BFR, VFA, BULIT-R, KoQoL and BSQ). But, there were continuous reductions in BW, BMI, BFR and VFA at 3 weeks after the end of treatment and there was significant reduction in BW compared with the baseline value in EA group. No seriously adverse effects were reported during the period. Conclusions : Electroacupuncture was more effective than sham electroacupuncture or no intervention on the reduction of WC, WHR and ASF in adults with abdominal obesity.

Structural Response Analysis of a Tension Leg Platform in Multi-directional Irregular Waves (다방향 불규칙파중의 인장계류식 해양구조물의 구조응답 해석)

  • Lee, Soo-Lyong;Suh, Kyu-Youl;Lee, Chang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.675-681
    • /
    • 2007
  • A numerical procedure is described for estimating the effects of the multi-directional irregular waves on the structural responses of the Tension Leg Platform (TLP). The numerical approach is based on a three dimensional source distribution method for hydrodynamic forces, a three dimensional frame analysis method for structural responses, in which the superstructure of TLP is assumed to be flexible instead of rigid. Hydrodynamic and hydrostatic forces on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in structural analysis. The spectral description used in spectral analysis of directional waves for the linear system of a TLP in the frequency domain is sufficient to completely define the structural responses. This is due to both the wave inputs and responses are stationary Gaussian random process of which the statistical properties in the amplitude domain are well known. The numerical results for the linear motion responses and tension variations in regular waves are compared with the experimental and numerical ones, which are obtained in Yoshida et al.(1983). The results of comparison confirmed the validity of the proposed approach.