A tensor is a multi-dimensional array that represents many data such as (user, user, time) in the social network system. A tensor generator is an important tool for multi-dimensional data mining research with various applications including simulation, multi-dimensional data modeling/understanding, and sampling/extrapolation. However, existing tensor generators cannot generate sparse tensors like real-world tensors that obey power law. In addition, they have limitations such as tensor sizes that can be processed and additional time required to upload generated tensor to distributed systems for further analysis. In this study, we propose TeT, a distributed tera-scale tensor generator to solve these problems. TeT generates sparse random tensor as well as sparse R-MAT and Kronecker tensor without any limitation on tensor sizes. In addition, a TeT-generated tensor is immediately ready for further tensor analysis on the same distributed system. The careful design of TeT facilitates nearly linear scalability on the number of machines.
In this paper, we propose a method for detecting the number of clusters. This method can improve the performance of a gaussian mixture model function in conventional markov random field method by using the tensor voting. The key point of the proposed method is that extracts the number of the center through the continuity of saliency map of the input data of the tensor voting token. At first, we separate the foreground and background region candidate in a given natural images. After that, we extract the appropriate cluster number for each separate candidate regions by applying the tensor voting. We can make accurate modeling a gaussian mixture model by using a detected number of cluster. We can return the result of natural binary text image by calculating the unary term and the pairwise term of markov random field. After the experiment, we can confirm that the proposed method returns the optimal cluster number and text binarization results are improved.
Let (X, Y) be a pair random variables and let f denote the regression function of the response Y on the measurement variable X. Let K(f) denote a derivative of f. The least squares method is used to obtain a tensor spline estimator $\hat{f}$ of f based on a random sample of size n from the distribution of (X, Y). Under some mild conditions, it is shown that $K(\hat{f})$ achieves the optimal rate of convergence for the estimation of K(f) in $L_2$ and $L_{\infty}$ norms.
Consider an unknown regression function f of the response Y on a d-dimensional measurement variable X. It is assumed that f belongs to a tensor Sobolev space. Let T denote a differential operator. Let $\hat{T}_n$ denote an estimator of T(f) based on a random sample of size n from the distribution of (X, Y), and let $\Vert \hat{T}_n - T(f) \Vert_2$ be the usual $L_2$ norm of the restriction of $\hat{T}_n - T(f)$ to a subset of $R^d$. Under appropriate regularity conditions, the optimal rate of convergence for $\Vert \hat{T}_n - T(f) \Vert_2$ is discussed.
불포화토에 있어서 함수상태는 지반이 건조할수록 수축하고 습윤상태로 진행할수록 파괴에 이르게 하는 추가적인 입자간 응력을 발생시키며, 이러한 간극수와 흙입자 사이에 발생하는 현상을 규명하기 위해서는 정확한 모형화가 필요하다. 흙입자와 간극수 사이의 상호작용에서 흡입유발 유효응력(suction-induced effective stress)을 규명하기 위해 정규모형(regular packing)과 임의모형(random packing)이 적용될 수 있다. 최근의 연구결과에 따르면 흙은 흡입유발 유효응력과 밀접한 관계가 있으며, 흙의 비등방텐서(anisotropic tensor)를 구하기 위해 적용된 ALTERNAT 모델을 이용하여 구조텐서(fabric tensor)를 개략적으로 정의할 수 있다. Thornton의 임의모형 시뮬레이션은 구조텐서에 상응하는 파괴응력 상태를 포함하고 있으며, 미소역학 시뮬레이션을 통하여 구조텐서를 구하였다. 본 연구에서는 상기에 언급된 구형의 흙입자 모형에 대한 이론적 고찰이 수행되었고, ALTERNAT 모델을 적용한 간단한 비등방텐서의 결과를 구조텐서와 비교하였다. 본 연구결과 비등방텐서는 미소역학 시뮬레이션에 의한 구조텐서에 비해 약 20~40%정도 큰 값을 나타내었다.
Let $Z_1, Z_2, \ldots, Z_l$ be random set functions or intergrals. Then it is possible to discuss their products. In the case of random integrals, $Z_i$ is a random set function indexed y a family, $G_i$ say, of real valued functions g on $S_i$ for which the integrals $Z_i(g) = \smallint gdZ_i$ are well defined. If $g_i = \in g_i (i = 1, 2, \ldots, l) and g_1 \otimes \cdots \otimes g_l$ denotes the tensor product $g(s) = g_1(s_1)g_2(s_2) \cdots g_l(s_l) for s = (s_1, s_2, \ldots, s_l) and s_i \in S_i$, then we can defined $Z(g) = (Z_1 \times Z_2 \times \cdots \times Z_l)(g) = Z_1(g_1)Z_2(g_2) \cdots Z_l(g_l)$.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.28
no.3
/
pp.108-119
/
2024
The Reynolds-averaged Navier-Stokes (RANS) simulations are commonly used in industrial applications due to their computational efficiency. However, the linear eddy viscosity model (LEVM) used in RANS often fails to accurately capture the anisotropy of Reynolds stress in complex flow conditions. To enhance RANS predictive accuracy, data-driven closure models, such as Tensor Basis Neural Network (TBNN) and Tensor Basis Random Forest (TBRF), have been proposed. However existing models, including TBNN and TBRF, have limitations in capturing the nonlocal patterns of turbulence models, resulting in irregular and unsmooth predictions. Convolutional neural networks (CNNs) are considered as an alternative approach, but their reliance on discretization poses challenges when dealing with arbitrarily designed meshes in RANS simulations. In this study, we propose a nonlinear convolutional neural operator as the RANS closure model. Our model satisfies Galilean invariance, can learn nonlocal physics, and recovers high-resolution physics even when trained on undersampled grids. The model outperforms existing TBNN and TBRF models, successfully predicting smooth fields of Reynolds stress in flows with adverse pressure gradients, separations, and streamline curvature, where existing models struggle or fail to provide accurate predictions.
In liquid composite molding (LCM), composites are produced by impregnation of a dry preform with liquid resin. The resin flow through the preform is usually described by Darcy's law and the permeability tensor must be obtained for filling analysis. While the resin flow in the thickness direction can be neglected for thin parts, the resin flow in the transverse direction is important for thicker parts. However, the transverse permeability of the preform has not been investigated frequently. In this study, the transverse permeability was measured experimentally for five different fiber preforms. In order to verify the experimental results, the measured transverse permeability was compared with numerical results. Five different fiber mats were used in this study: glass fiber woven fabric, aramid fiber woven fabric, glass fiber random mat, glass fiber braided preform, and glass/aramid hybrid braided preform. The anisotropic braided preforms were manufactured by using a three dimensional braiding machine. The pressure was measured at the inlet and outlet positions with pressure transducers.
KIPS Transactions on Software and Data Engineering
/
v.3
no.10
/
pp.421-428
/
2014
Like Alzheimer's disease, Parkinson's Disease(PD) is one of the most common neurodegenerative brain disorders. PD results from the deterioration of dopaminergic neurons in the brain region called the substantia nigra. Currently there is no cure for PD, but diagnosing in its early stage is important to provide treatments for relieving the symptoms and maintaining quality of life. Unlike many diagnosis methods of PD which use a single biomarker, we developed a diagnosis method that uses both biochemical biomarkers and imaging biomarkers. Our method uses ${\alpha}$-synuclein protein levels in the cerebrospinal fluid and diffusion tensor images(DTI). It achieved an accuracy over 91.3% in the 10-fold cross validation, and the best accuracy of 72% in an independent testing, which suggests a possibility for early detection of PD. We also analyzed the characteristics of the brain fiber pathways of Parkinson's disease patients and normal elderly people.
Diffusion tensor image(DTI) exploits the random diffusional motion of water molecules. This method is useful for the characterization of the architecture of tissues. In some tissues, such as muscle or cerebral white matter, cellular arrangement shows a strongly preferred direction of water diffusion, i.e., the diffusion is anisotropic. The degree of anisotropy is often represented using diffusion anisotropy indices (relative anisotropy(RA), fractional anisotropy(FA), volume ratio(VR)). In this study, FA images were obtained using different gradient schemes(N=6, 11, 23, 35. 47). Mean values and the standard deviations of FA were then measured at several anatomic locations for each scheme. The results showed that both mean values and the standard deviations of FA were decreased as the number of gradient directions were increased. Also, the standard error of ADC measurement decreased as the number of diffusion gradient directions increased. In conclusion, different gradient schemes showed a significantly different noise performance and the schem with more gradient directions clearly improved the quality of the FA images. But considering acquisition time of image and standard deviation of FA, 23 gradient directions is clinically optimal.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.