• Title/Summary/Keyword: random routing

Search Result 95, Processing Time 0.026 seconds

Centralized Clustering Routing Based on Improved Sine Cosine Algorithm and Energy Balance in WSNs

  • Xiaoling, Guo;Xinghua, Sun;Ling, Li;Renjie, Wu;Meng, Liu
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.17-32
    • /
    • 2023
  • Centralized hierarchical routing protocols are often used to solve the problems of uneven energy consumption and short network life in wireless sensor networks (WSNs). Clustering and cluster head election have become the focuses of WSNs. In this paper, an energy balanced clustering routing algorithm optimized by sine cosine algorithm (SCA) is proposed. Firstly, optimal cluster head number per round is determined according to surviving node, and the candidate cluster head set is formed by selecting high-energy node. Secondly, a random population with a certain scale is constructed to represent a group of cluster head selection scheme, and fitness function is designed according to inter-cluster distance. Thirdly, the SCA algorithm is improved by using monotone decreasing convex function, and then a certain number of iterations are carried out to select a group of individuals with the minimum fitness function value. From simulation experiments, the process from the first death node to 80% only needs about 30 rounds. This improved algorithm balances the energy consumption among nodes and avoids premature death of some nodes. And it greatly improves the energy utilization and extends the effective life of the whole network.

Effect of Random Node Distribution on the Throughput in Infrastructure-Supported Erasure Networks (인프라구조 도움을 받는 소거 네트워크에서 용량에 대한 랜덤 노드 분포의 효과)

  • Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.911-916
    • /
    • 2016
  • The nearest-neighbor multihop routing with/without infrastructure support is known to achieve the optimal capacity scaling in a large packet-erasure network in which multiple wireless nodes and relay stations are regularly placed and packets are erased with a certain probability. In this paper, a throughput scaling law is shown for an infrastructure-supported erasure network where wireless nodes are randomly distributed, which is a more feasible scenario. We use an exponential decay model to suitably model an erasure probability. To achieve high throughput in hybrid random erasure networks, the multihop routing via highway using the percolation theory is proposed and the corresponding throughput scaling is derived. As a main result, the proposed percolation highway based routing scheme achieves the same throughput scaling as the nearest-neighbor multihop case in hybrid regular erasure networks. That is, it is shown that no performance loss occurs even when nodes are randomly distributed.

Wireless Multihop Communications for Frontier cell based Multi-Robot Path Finding with Relay Robot Random Stopping (다중홉 통신 기법을 활용한 네트워크 로봇의 협력적 경로 탐색)

  • Jung, Jin-Hong;Kim, Seong-Lyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11B
    • /
    • pp.1030-1037
    • /
    • 2008
  • This paper presents an algorithm for the path-finding problem in unknown environments with cooperative and commutative multi-robots. To verify the algorithm, we investigate the problem of escaping through the exit of a randomly generated maze by muti-robots. For the purpose, we adopt the so called frontier cells and cell utility functions, which were used in the exploration problem for the multi-robots. For the wireless communications among the mobile robots, we modify and utilize the so called the random basket routing, a kind of hop-by-hop opportunistic routing. A mobile robot, once it finds the exit, will choose its next action, either escape immediately or stay-and-relay the exit information for the others, where the robot takes one action based on a given probability. We investigate the optimal probability that minimizes the average escaping time (out of the maze to the exit) of a mobile robot.

Efficient Peer-to-Peer Lookup in Multi-hop Wireless Networks

  • Shin, Min-Ho;Arbaugh, William A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.1
    • /
    • pp.5-25
    • /
    • 2009
  • In recent years the popularity of multi-hop wireless networks has been growing. Its flexible topology and abundant routing path enables many types of applications. However, the lack of a centralized controller often makes it difficult to design a reliable service in multi-hop wireless networks. While packet routing has been the center of attention for decades, recent research focuses on data discovery such as file sharing in multi-hop wireless networks. Although there are many peer-to-peer lookup (P2P-lookup) schemes for wired networks, they have inherent limitations for multi-hop wireless networks. First, a wired P2P-lookup builds a search structure on the overlay network and disregards the underlying topology. Second, the performance guarantee often relies on specific topology models such as random graphs, which do not apply to multi-hop wireless networks. Past studies on wireless P2P-lookup either combined existing solutions with known routing algorithms or proposed tree-based routing, which is prone to traffic congestion. In this paper, we present two wireless P2P-lookup schemes that strictly build a topology-dependent structure. We first propose the Ring Interval Graph Search (RIGS) that constructs a DHT only through direct connections between the nodes. We then propose the ValleyWalk, a loosely-structured scheme that requires simple local hints for query routing. Packet-level simulations showed that RIGS can find the target with near-shortest search length and ValleyWalk can find the target with near-shortest search length when there is at least 5% object replication. We also provide an analytic bound on the search length of ValleyWalk.

Performance Variations of AODV, DSDV and DSR Protocols in MANET under CBR Traffic using NS-2.35

  • Chandra, Pankaj;Soni, Santosh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.13-20
    • /
    • 2022
  • Basically Mobile Ad Hoc Network (MANET) is an autonomous system with the collection of mobile nodes, these nodes are connected to each other by using wireless networks. A mobile ad hoc network poses this quality which makes topology in dynamic manner. As this type of network is Ad Hoc in nature hence it doesn't have fixed infrastructure. If a node wishes to transfer data from source node to a sink node in the network, the data must be passed through intermediate nodes to reach the destination node, hence in this process data packet loss occurs in various MANET protocols. This research study gives a comparison of various Mobile Ad Hoc Network routing protocols like proactive (DSDV) and reactive (AODV, DSR) by using random topology with more intermediate nodes using CBR traffic. Our simulation used 50, 100, and 150 nodes variations to examine the performance of the MANET routing protocols. We compared the performance of DSDV, AODV and DSR, MANET routing protocols with the result of existing protocol using NS-2 environment, on the basis of different performance parameters like Packet Delivery Ratio, average throughput and average end to end delay. Finally we found that our results are better in terms of throughput and packet delivery ratio along with low data loss.

Performance Evaluation of Vehicle Routing Algorithms in a Stochastic Environment (Stochastic 환경에서 확정적 차량경로결정 해법들의 성능평가)

  • 박양병
    • Korean Management Science Review
    • /
    • v.17 no.2
    • /
    • pp.175-187
    • /
    • 2000
  • The stochastic vehicle routing problem (VRP) is a problem of growing importance since it includes a reality that the deterministic VRP does not have. The stochastic VRP arises whenever some elements of the problem are random. Common examples are stochastic service quantities and stochastic travel times. The solution methodologies for the stochastic VRP are very intricate and regarded as computationally intractable. Even heuristics are hard to develope and implement. On possible way of solving it is to apply a solution for the deterministic VRP. This paper presents a performance evaluation of four simple heuristic for the deterministic VRP is a stochastic environment. The heuristics are modified to consider the time window constraints. The computational results show that some of them perform very well in different cases of the stochastic VRP.

  • PDF

An Efficient Multicast Routing Algorithm for Packet-Switched Networks

  • Chung, Sung-Jin;Hong, Sung-Pil;Park, Bum-Hwan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.397-400
    • /
    • 1998
  • This paper has a dual purpose. First, we consider a relaxation algorithm which seems to be particularly suitable for multicasting routing problems. We show that the algorithm has polynomial complexity. Second, to measure the quality of solutions in comparison to the optimal solutions over a wide range of network sizes for which the computation of the optimal costs is too excessive, we also propose a random graph generation scheme in which an asymptotic lower bound on the expected optimal cost can be computed as a function of network node size.

  • PDF

The analysis and modeling of the performance improvement method of multistage interconnection networks (다단상호연결네트웍의 성능 향상 기법의 해석적 모델링 및 분석 평가)

  • 문영성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.6
    • /
    • pp.1490-1495
    • /
    • 1998
  • Call packing has been recognized as a routing scheme that significantly reduces the blocking probability of connection requests in a circuit-switched Clos multistage interconnection network. In this paper, for the first time, a general analytical model for the point-to-point blocking probability of the call-packing scheme applied to Clos networks is developed. By introducing a new parameter called the degree of call packing, the model can correctly estimate the blocking probability of both call-packing and random routing schemes. The model is verified by computer simulation for various size networks and traffic conditions.

  • PDF

A New Model of a Routing and Wavelength Assignment Problem on WDM Ring Networks (WDM 환형 망에서 경의 실정 및 파장 할당 문제의 새로운 모형)

  • Gang Dong Han;Gang Jang Ha;Park Seong Su
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.397-401
    • /
    • 2002
  • We consider a routing and wavelength assignment (RWA) problem on wavelength division multiplexing (WDM) ring networks, which is to maximize the established connections between nodes, given a set of usable wavelengths. We propose two new mathematical formulations of it and efficient algorithms based on branch-and-price method. Computational experiments on random instances show that cue of the proposed formulations yields optimal solutions in much shorter time on the average than the previous formulation due to Lee (1998).

  • PDF

A Distributed Sequential Link Schedule Combined with Routing in Wireless Mesh Networks

  • Cha, Jae-Ryong;Kim, Jae-Hyun
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.462-465
    • /
    • 2012
  • This letter proposes a new distributed scheduling scheme combined with routing to support the quality of service of real-time applications in wireless mesh networks. Next, this letter drives average end-to-end delay of the proposed scheduling scheme that sequentially schedules the slots on a path. Finally, this letter simulates the time division multiple access network for performance comparison. From the simulation results, when the average number of hops is 2.02, 2.66, 4.1, 4.75, and 6.3, the proposed sequential scheduling scheme reduces the average end-to-end delay by about 28%, 10%, 17%, 27%, and 30%, respectively, compared to the conventional random scheduling scheme.