• Title/Summary/Keyword: random process

Search Result 1,657, Processing Time 0.026 seconds

CdSe Quantum Dot based Transparent Light-emitting Device using Silver Nanowire/Ga-doped ZnO Composite Electrode (AgNWs/Ga-doped ZnO 복합전극 적용 CdSe양자점 기반 투명발광소자)

  • Park, Jehong;Kim, Hyojun;Kang, Hyeonwoo;Kim, Jongsu;Jeong, Yongseok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.6-10
    • /
    • 2020
  • The silver nanowires (AgNWs) were synthesized by the conventional polyol process, which revealed 25 ㎛ and 30 nm of average length and diameter, respectively. The synthesized AgNWs were applied to the CdSe/CdZnS quantum dot (QD) based transparent light-emitting device (LED). The device using a randomly networked AgNWs electrode had some problems such as the high threshold voltage (for operating the device) due to the random pores from the networked AgNWs. As a method of improvement, a composite electrode was formed by overlaying the ZnO:Ga on the AgNWs network. The device used the composite electrode revealed a low threshold voltage (4.4 Vth) and high current density compared to the AgNWs only electrode device. The brightness and current density of the device using composite electrode were 55.57 cd/㎡ and 41.54 mA/㎠ at the operating voltage of 12.8 V, respectively, while the brightness and current density of the device using (single) AgNWs only were 1.71 cd/㎡ and 2.05 mA/㎠ at the same operating voltage. The transmittance of the device revealed 65 % in a range of visible light. Besides the reliability of the devices was confirmed that the device using the composite electrode revealed 2 times longer lifetime than that of the AgNWs only electrode device.

Learning data preprocessing technique for improving indoor positioning performance based on machine learning (기계학습 기반의 실내 측위 성능 향상을 위한 학습 데이터 전처리 기법)

  • Kim, Dae-Jin;Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1528-1533
    • /
    • 2020
  • Recently, indoor location recognition technology using Wi-Fi fingerprints has been applied and operated in various industrial fields and public services. Along with the interest in machine learning technology, location recognition technology based on machine learning using wireless signal data around a terminal is rapidly developing. At this time, in the process of collecting radio signal data required for machine learning, the accuracy of location recognition is lowered due to distorted or unsuitable data for learning. In addition, when location recognition is performed based on data collected at a specific location, a problem occurs in location recognition at surrounding locations that are not included in the learning. In this paper, we propose a learning data preprocessing technique to obtain an improved position recognition result through the preprocessing of the collected learning data.

Automated Scoring of Argumentation Levels and Analysis of Argumentation Patterns Using Machine Learning (기계 학습을 활용한 논증 수준 자동 채점 및 논증 패턴 분석)

  • Lee, Manhyoung;Ryu, Suna
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.3
    • /
    • pp.203-220
    • /
    • 2021
  • We explored the performance improvement method of automated scoring for scientific argumentation. We analyzed the pattern of argumentation using automated scoring models. For this purpose, we assessed the level of argumentation for student's scientific discourses in classrooms. The dataset consists of four units of argumentation features and argumentation levels for episodes. We utilized argumentation clusters and n-gram to enhance automated scoring accuracy. We used the three supervised learning algorithms resulting in 33 automatic scoring models. As a result of automated scoring, we got a good scoring accuracy of 77.59% on average and up to 85.37%. In this process, we found that argumentation cluster patterns could enhance automated scoring performance accuracy. Then, we analyzed argumentation patterns using the model of decision tree and random forest. Our results were consistent with the previous research in which justification in coordination with claim and evidence determines scientific argumentation quality. Our research method suggests a novel approach for analyzing the quality of scientific argumentation in classrooms.

Approaches to measurement system analysis in quality management (품질경영에서 측정시스템분석 방안)

  • Baik, Jaiwook
    • Industry Promotion Research
    • /
    • v.6 no.3
    • /
    • pp.19-24
    • /
    • 2021
  • There should be no problem in the measurement system for scientific quality management. In this paper, we want to correctly identify the factors that can affect the measurement results during the measurement process and identify what causes them when the measurement results cause problems in terms of location and variation. Variations in the measurement system are largely described in terms of location and dispersion. Location-related attributes are accuracy, stability, and linearity while dispersion-related attributes are reproducibility and repeatability. Analyzing the factors associated with dispersion is an R&R analysis, in which the size of repeatability and reproducibility is represented by a range of differences between multiple measurements and a range of differences between measurements, and 99% of dispersion is determined. Experimental design can also be used for measurement system analysis. Proper analysis is performed only when the factors causing the fluctuation, the worker and the product, are correctly identified as random or fixed factors.

A study on the construction of the quality prediction model by artificial neural intelligence through integrated learning of CAE-based data and experimental data in the injection molding process (사출성형공정에서 CAE 기반 품질 데이터와 실험 데이터의 통합 학습을 통한 인공지능 품질 예측 모델 구축에 대한 연구)

  • Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.24-31
    • /
    • 2021
  • In this study, an artificial neural network model was constructed to convert CAE analysis data into similar experimental data. In the analysis and experiment, the injection molding data for 50 conditions were acquired through the design of experiment and random selection method. The injection molding conditions and the weight, height, and diameter of the product derived from CAE results were used as the input parameters for learning of the convert model. Also the product qualities of experimental results were used as the output parameters for learning of the convert model. The accuracy of the convert model showed RMSE values of 0.06g, 0.03mm, and 0.03mm in weight, height, and diameter, respectively. As the next step, additional randomly selected conditions were created and CAE analysis was performed. Then, the additional CAE analysis data were converted to similar experimental data through the conversion model. An artificial neural network model was constructed to predict the quality of injection molded product by using converted similar experimental data and injection molding experiment data. The injection molding conditions were used as input parameters for learning of the predicted model and weight, height, and diameter of the product were used as output parameters for learning. As a result of evaluating the performance of the prediction model, the predicted weight, height, and diameter showed RMSE values of 0.11g, 0.03mm, and 0.05mm and in terms of quality criteria of the target product, all of them showed accurate results satisfying the criteria range.

Predicting As Contamination Risk in Red River Delta using Machine Learning Algorithms

  • Ottong, Zheina J.;Puspasari, Reta L.;Yoon, Daeung;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.127-135
    • /
    • 2022
  • Excessive presence of As level in groundwater is a major health problem worldwide. In the Red River Delta in Vietnam, several million residents possess a high risk of chronic As poisoning. The As releases into groundwater caused by natural process through microbially-driven reductive dissolution of Fe (III) oxides. It has been extracted by Red River residents using private tube wells for drinking and daily purposes because of their unawareness of the contamination. This long-term consumption of As-contaminated groundwater could lead to various health problems. Therefore, a predictive model would be useful to expose contamination risks of the wells in the Red River Delta Vietnam area. This study used four machine learning algorithms to predict the As probability of study sites in Red River Delta, Vietnam. The GBM was the best performing model with the accuracy, precision, sensitivity, and specificity of 98.7%, 100%, 95.2%, and 100%, respectively. In addition, it resulted the highest AUC of 92% and 96% for the PRC and ROC curves, with Eh and Fe as the most important variables. The partial dependence plot of As concentration on the model parameters showed that the probability of high level of As is related to the low number of wells' depth, Eh, and SO4, along with high PO43- and NH4+. This condition triggers the reductive dissolution of iron phases, thus releasing As into groundwater.

Subspace analysis of Poisson Model to extract Firing Characteristics in Visual Cortex (시각 피질의 발화 특성 추출을 위한 포아송 모델의 부공간 해석)

  • Lee, Youngseok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • It has been found through physiological experiments that the visual neurons constituting the human visual cortex do not respond to all visual stimuli, but to a visual stimuli with specific conditions. In order to interpret such physiological experiments, a model that can simulate the firing characteristics of neurons including a linear filter with random gain was proposed. It has been proven through experiments that subspaces are formed. To verify the validity of the implemented model, the distribution of values for two pixels randomly extracted from four different visual stimulus data was observed. The difference between the two distributions was confirmed by extracting the central coordinate value, that is, the coordinate value with the most values, from the distribution of the total stimulus data and the spike ignition stimulus data. In the case of the entire set, it was verified through experiments that the stimulus data generating spikes is a subset or subspace of the entire stimulus data. This study can be used as a basic study related to the mechanism of spikes in response to visual stimuli.

Analysis of Text Mining of Consumer's Personality Implication Words in Review of Used Transaction Application (중고거래 어플리케이션 <당근마켓> 리뷰텍스트에 나타난 소비자의 인성 함축단어 텍스트마이닝 분석)

  • Jung, Yea-Rin;Ju, Young-Ae
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.1-10
    • /
    • 2021
  • This study analyzes the use and meaning of consumer personality implication words in the review text of the Used Transaction Application . From of May 2021, the data were collected for the past six months by our Web crawler in Seoul and Gyeonggi Province, and a total of 1368 cases were collected first by random sampling, and finally 570 cases were preprocessed. The results are as follows. First, 48.2% of review texts were related to the personality of consumers even though it was a commercial platform of products. Second, the review text is mainly positive, which formed a text network structure based on the keyword 'gratitude'. Third, the review text, which implies consumer character, was divided into two groups: 'extrovert personality' and 'introvert personality' of consumers. And the individuality of the two groups worked together on the platform. In conclusion, we would like to suggest that consumer personality plays an important role in the platform transaction process, that consumer personality will play a role in the services of the platform in the future, and that consumer personality should be studied from various perspectives.

Synthetic data augmentation for pixel-wise steel fatigue crack identification using fully convolutional networks

  • Zhai, Guanghao;Narazaki, Yasutaka;Wang, Shuo;Shajihan, Shaik Althaf V.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.237-250
    • /
    • 2022
  • Structural health monitoring (SHM) plays an important role in ensuring the safety and functionality of critical civil infrastructure. In recent years, numerous researchers have conducted studies to develop computer vision and machine learning techniques for SHM purposes, offering the potential to reduce the laborious nature and improve the effectiveness of field inspections. However, high-quality vision data from various types of damaged structures is relatively difficult to obtain, because of the rare occurrence of damaged structures. The lack of data is particularly acute for fatigue crack in steel bridge girder. As a result, the lack of data for training purposes is one of the main issues that hinders wider application of these powerful techniques for SHM. To address this problem, the use of synthetic data is proposed in this article to augment real-world datasets used for training neural networks that can identify fatigue cracks in steel structures. First, random textures representing the surface of steel structures with fatigue cracks are created and mapped onto a 3D graphics model. Subsequently, this model is used to generate synthetic images for various lighting conditions and camera angles. A fully convolutional network is then trained for two cases: (1) using only real-word data, and (2) using both synthetic and real-word data. By employing synthetic data augmentation in the training process, the crack identification performance of the neural network for the test dataset is seen to improve from 35% to 40% and 49% to 62% for intersection over union (IoU) and precision, respectively, demonstrating the efficacy of the proposed approach.

Classification Model of Food Groups in Food Exchange Table Using Decision Tree-based Machine Learning

  • Kim, Ji Yun;Kim, Jongwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.51-58
    • /
    • 2022
  • In this paper, we propose a decision tree-based machine learning model that leads to food exchange table renewal by classifying food groups through machine learning for existing food and food data found by web crawling. The food exchange table is the standard for food exchange intake when composing a diet such as diet and diet, as well as patients who need nutritional management. The food exchange table, which is the standard for the composition of the diet, takes a lot of manpower and time in the process of revision through the National Health and Nutrition Survey, making it difficult to quickly reflect food changes according to new foods or trends. Since the proposed technique classifies newly added foods based on the existing food group, it is possible to organize a rapid food exchange table reflecting the trend of food. As a result of classifying food into the proposed model in the study, the accuracy of the food group in the food exchange table was 97.45%, so this food classification model is expected to be highly utilized for the composition of a diet that suits your taste in hospitals and nursing homes.